forked from carrenD/ummkd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
244 lines (184 loc) · 8.74 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import numpy as np
import tensorflow as tf
from math import floor
import SimpleITK as sitk
def weight_variable(shape, stddev=0.01, trainable=True, name=None):
# initial = tf.truncated_normal(shape, stddev=stddev)
# return tf.Variable(initial, trainable=trainable, name=name)
with tf.variable_scope("kernel", reuse = tf.AUTO_REUSE):
kernel = tf.get_variable(name = name, shape = shape, trainable = trainable, initializer = tf.truncated_normal_initializer(stddev = stddev))
return kernel
def residual_block_leaky(x, w1, w2, keep_prob_, is_train, bn_trainable, inc_dim = False, scope = None):
"""
:param x:
:param w1:
:param w2:
:param keep_prob_:
:param is_train: set for BN layer, whether in training mode
:param bn_trainable:
:param inc_dim:
:param scope:
:return:
"""
_x_channel = x.get_shape().as_list()[-1]
if scope is None:
_loc_scope1 = None
_loc_scope2 = None
else:
_loc_scope1 = scope + "_1"
_loc_scope2 = scope + "_2"
_inner_conv = bn_leaky_relu_conv2d_layer(x, w1, keep_prob_, is_train = is_train, scope = _loc_scope1, bn_trainable = bn_trainable)
_inner_conv = bn_leaky_relu_conv2d_layer(_inner_conv, w2, keep_prob_, is_train = is_train, scope = _loc_scope2, bn_trainable = bn_trainable)
if inc_dim is True:
# pooled_out = tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
x_s = tf.pad(x, [ [0,0], [0,0], [0,0], [_x_channel // 2, _x_channel // 2]])
else:
x_s = x
return x_s + _inner_conv
def bn_leaky_relu_conv2d_layer(x, w, keep_prob_, is_train, scope, bn_trainable, stride = 1):
bn_layer = batch_norm(x, is_training = is_train, scope = scope, trainable = bn_trainable)
leaky_relu_layer = tf.nn.leaky_relu(bn_layer)
conv2d_layer = tf.nn.conv2d(leaky_relu_layer, w, strides=[1,stride,stride,1], padding='SAME')
return tf.nn.dropout(conv2d_layer, keep_prob_)
def batch_norm(x, is_training, scope, trainable = True):
# Important: set updates_collections=None to force the updates in place, but that can have a speed penalty, especially in distributed settings.
# with tf.variable_scope(scope, reuse = tf.AUTO_REUSE):
return tf.contrib.layers.batch_norm(x, is_training = is_training, decay = 0.90, scale = True, center = True, \
scope = scope, variables_collections = ["internal_batchnorm_variables"], \
updates_collections = None, trainable = trainable)
def DR_block_leaky(x, w1, w2, keep_prob_, is_train, rate, bn_trainable, inc_dim = False, scope = None):
_x_channel = x.get_shape().as_list()[-1]
if scope is None:
_loc_scope1 = None
_loc_scope2 = None
else:
_loc_scope1 = scope + "_1"
_loc_scope2 = scope + "_2"
_inner_conv = bn_leaky_relu_dilate_conv2d_layer(x, w1, keep_prob_, is_train = is_train, rate = rate, scope = _loc_scope1, bn_trainable = bn_trainable)
_inner_conv = bn_leaky_relu_dilate_conv2d_layer(_inner_conv, w2, keep_prob_, is_train = is_train, rate =rate, scope = _loc_scope2, bn_trainable = bn_trainable)
if inc_dim is True:
# pooled_out = tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
x_s = tf.pad(x, [ [0,0], [0,0], [0,0], [_x_channel // 2, _x_channel // 2]])
else:
x_s = x
return x_s + _inner_conv
def bn_leaky_relu_dilate_conv2d_layer(x, w, keep_prob_, is_train, rate, scope, bn_trainable, stride = 1):
bn_layer = batch_norm(x, is_training = is_train, scope = scope, trainable = bn_trainable)
leaky_relu_layer = tf.nn.leaky_relu(bn_layer)
dilate_conv2d = tf.nn.atrous_conv2d(leaky_relu_layer, w, rate = rate, padding = "SAME")
return tf.nn.dropout(dilate_conv2d, keep_prob_)
def conv2d(x, w):
conv_2d = tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='SAME')
return conv_2d
def conv2d_sym(x, w, is_train=True, scope=None, bn_trainable=True):
# this is for convolution with symmetric padding, to deal with boundary effect!
# also include bn and relu
k_shape = w.get_shape().as_list()
pd_offset = tf.constant( [[0, 0], [ floor(k_shape[0] / 2 ) , floor(k_shape[0] / 2 )], [ floor(k_shape[1] / 2 ) , floor(k_shape[1] / 2)], [0, 0 ]] )
pd_offset = tf.cast(pd_offset, tf.int32)
x = tf.pad(x, pd_offset, 'SYMMETRIC' )
conv_2d = tf.nn.conv2d(x, w, strides=[1,1,1,1], padding = 'VALID')
bn = batch_norm(conv_2d, is_training = is_train, scope = scope, trainable = bn_trainable)
return tf.nn.leaky_relu(bn)
def conv2d_sym_only(x, w, stride=1):
# this is for convolution with symmetric padding, to deal with boundary effect!
k_shape = w.get_shape().as_list()
pd_offset = tf.constant( [[0, 0], [ floor(k_shape[0] / 2 ) , floor(k_shape[0] / 2 )], [ floor(k_shape[1] / 2 ) , floor(k_shape[1] / 2)], [0, 0 ]] )
pd_offset = tf.cast(pd_offset, tf.int32)
x = tf.pad(x, pd_offset, 'SYMMETRIC' )
conv_2d = tf.nn.conv2d(x, w, strides=[1,stride,stride,1], padding = 'VALID')
return conv_2d
def max_pool2d(x, n):
return tf.nn.max_pool(x, ksize=[1, n, n, 1], strides=[1, n, n, 1], padding='SAME')
def pixel_wise_softmax_2(output_map):
exponential_map = tf.exp(output_map)
sum_exp = tf.reduce_sum(exponential_map, 3, keep_dims=True)
tensor_sum_exp = tf.tile(sum_exp, tf.stack([1, 1, 1, tf.shape(output_map)[3]]))
return tf.clip_by_value( tf.div(exponential_map,tensor_sum_exp), -1.0 * 1e15, 1.0* 1e15, name = "pixel_softmax_2d")
def _read_lists(fid):
""" read train list and test list """
if not os.path.isfile(fid):
return None
with open(fid, 'r') as fd:
_list = fd.readlines()
my_list = []
for _item in _list:
if len(_item) < 5:
_list.remove(_item)
my_list.append(_item.split('\n')[0])
return my_list
def _label_decomp(label_vol, num_class):
"""decompose label for softmax classifier
original labels are batchsize * W * H * 1, with label values 0,1,2,3...
this function decompse it to one hot, e.g.: 0,0,0,1,0,0 in channel dimension
numpy version of tf.one_hot
"""
_batch_shape = list(label_vol.shape)
_vol = np.zeros(_batch_shape)
_vol[label_vol == 0] = 1
_vol = _vol[..., np.newaxis]
for i in range(num_class):
if i == 0:
continue
_n_slice = np.zeros(label_vol.shape)
_n_slice[label_vol == i] = 1
_vol = np.concatenate((_vol, _n_slice[..., np.newaxis]), axis=3)
return np.float32(_vol)
def _phase_shift(I, r, batch_size):
# Helper function with main phase shift operation
_, a, b, c = I.get_shape().as_list()
X = tf.reshape(I, (batch_size, a, b, r, r))
X = tf.transpose(X, (0, 1, 2, 4, 3)) # bsize, a, b, 1, 1
X = tf.split(X, a, 1) # a, [bsize, b, r, r]
X = tf.concat([tf.squeeze(x) for x in X], 2) # bsize, b, a*r, r
if batch_size == 1:
X = tf.expand_dims( X, 0 )
X = tf.split(X, b, 1) # b, [bsize, a*r, r]
if batch_size == 1:
X = tf.concat([x for x in X], 2 )
else:
X = tf.concat([tf.squeeze(x) for x in X], 2) #
out = tf.reshape(X, (batch_size, a*r, b*r, 1))
if batch_size == 1:
out = tf.transpose( out, (0,2,1,3) )
return out
def PS(X, r, batch_size, n_channel = 8):
# Main OP that you can arbitrarily use in you tensorflow code
Xc = tf.split(X, n_channel, -1 )
X = tf.concat([_phase_shift(x, r, batch_size) for x in Xc], 3)
return X
def _eval_dice(gt_y, pred_y, detail=False):
class_map = { # a map used for mapping label value to its name, used for output
"0": "bg",
"1": "lv_myo",
"2": "la_blood",
"3": "lv_blood",
"4": "aa"
}
dice = []
for cls in xrange(1, 5):
gt = np.zeros(gt_y.shape)
pred = np.zeros(pred_y.shape)
gt[gt_y == cls] = 1
pred[pred_y == cls] = 1
dice_this = 2*np.sum(gt*pred)/(np.sum(gt)+np.sum(pred))
dice.append(dice_this)
if detail is True:
print ("class {}, dice is {:2f}".format(class_map[str(cls)], dice_this))
return dice
def _save_nii(pred_mask, gt_mask, gt_fle, output_path):
ref = sitk.ReadImage(gt_fle)
img = sitk.GetImageFromArray(pred_mask)
img.SetSpacing(ref.GetSpacing())
img.SetOrigin(ref.GetOrigin())
img.SetDirection(ref.GetDirection())
save_path = os.path.join(output_path, gt_fle.split('/')[-1].split('.')[0]+'_predmask.nii.gz')
sitk.WriteImage(img, save_path)
gt_mask[gt_mask > 4] = 0
img = sitk.GetImageFromArray(gt_mask)
img.SetSpacing(ref.GetSpacing())
img.SetOrigin(ref.GetOrigin())
img.SetDirection(ref.GetDirection())
save_path = os.path.join(output_path, gt_fle.split('/')[-1].split('.')[0]+'_gtmask.nii.gz')
sitk.WriteImage(img, save_path)