forked from sKamiJ/DCCS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
155 lines (120 loc) · 4.97 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# -*- coding: UTF-8 -*-
import torch
import torch.nn as nn
class EmptyLayer(nn.Module):
def __init__(self):
super(EmptyLayer, self).__init__()
def forward(self, x):
return x
class Norm2dLayer(nn.Module):
def __init__(self, channels, norm_type='bn', **kwargs):
super(Norm2dLayer, self).__init__()
assert norm_type in ['none', 'bn', 'ln', 'in', 'gn']
if norm_type == 'bn':
momentum = kwargs.get('momentum', 0.1)
self.norm = nn.BatchNorm2d(channels, momentum=momentum)
elif norm_type == 'ln':
self.norm = nn.GroupNorm(1, channels)
elif norm_type == 'in':
self.norm = nn.GroupNorm(channels, channels)
elif norm_type == 'gn':
num_groups = kwargs.get('num_groups', 8)
self.norm = nn.GroupNorm(num_groups, channels)
else:
self.norm = EmptyLayer()
self.reset_parameters()
def reset_parameters(self):
if not isinstance(self.norm, EmptyLayer):
nn.init.ones_(self.norm.weight)
nn.init.zeros_(self.norm.bias)
def forward(self, x):
return self.norm(x)
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, sample_type='none', norm_type='none', **kwargs):
super(ResBlock, self).__init__()
assert sample_type in ['none', 'up', 'down']
bias = norm_type != 'bn'
self.block = nn.Sequential(
Norm2dLayer(in_channels, norm_type=norm_type, **kwargs),
nn.ReLU(inplace=True),
nn.UpsamplingNearest2d(scale_factor=2) if sample_type == 'up' else EmptyLayer(),
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=bias),
Norm2dLayer(out_channels, norm_type=norm_type, **kwargs),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=bias),
nn.AvgPool2d(kernel_size=2, stride=2) if sample_type == 'down' else EmptyLayer()
)
if sample_type != 'none' or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.UpsamplingNearest2d(scale_factor=2) if sample_type == 'up' else EmptyLayer(),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=True),
nn.AvgPool2d(kernel_size=2, stride=2) if sample_type == 'down' else EmptyLayer(),
)
else:
self.shortcut = None
self.reset_parameters()
def reset_parameters(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.GroupNorm):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
def forward(self, x):
out = self.block(x)
if self.shortcut is None:
shortcut = x
else:
shortcut = self.shortcut(x)
return out + shortcut
class OptimizedResBlockDown(nn.Module):
def __init__(self, in_channels, out_channels, norm_type='none', **kwargs):
super(OptimizedResBlockDown, self).__init__()
bias = norm_type != 'bn'
self.block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=bias),
Norm2dLayer(out_channels, norm_type=norm_type, **kwargs),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=bias),
nn.AvgPool2d(kernel_size=2, stride=2),
)
self.shortcut = nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=True)
)
self.reset_parameters()
def reset_parameters(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.GroupNorm):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
def forward(self, x):
out = self.block(x)
shortcut = self.shortcut(x)
return out + shortcut
class SobelLayer(nn.Module):
def __init__(self, normalize=False):
super(SobelLayer, self).__init__()
self.sobel = nn.Conv2d(1, 2, kernel_size=3, padding=1, bias=False)
self.sobel.weight.requires_grad_(False)
self.sobel.weight.copy_(torch.tensor([
[[
[1, 0, -1],
[2, 0, -2],
[1, 0, -1]
]],
[[
[1, 2, 1],
[0, 0, 0],
[-1, -2, -1]
]]], dtype=torch.float32))
if normalize:
self.sobel.weight /= 8
def forward(self, x):
return self.sobel(x)