-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrendezvous.ks
300 lines (265 loc) · 9.24 KB
/
rendezvous.ks
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// Perform the intersection and rendezvous burn, presuming
// inclination alignment is already matched.
parameter other. // i.e. target, vessel("name"), or body("name").
parameter skips. // number of steps to skip over.
run once "lib/prediction".
run once "lib/burn".
set ship:control:pilotmainthrottle to 0.
clearscreen.
print " ".
print " ".
print " ".
set intersect_ta to orbit_cross_ta(ship:obt, other:obt, 10, 0.01).
if skips = 0 {
if intersect_ta < 0 {
print "No intersect point in the orbits yet.".
print "Waiting for periapsis to correct this.".
wait until eta:periapsis < 20*(warp+1)^1.5.
set warp to 0.
// May have to enlarge or shink the orbit:
if ship:obt:semimajoraxis < other:obt:semimajoraxis {
sas off.
lock steering to prograde.
print "Will enlarge my orbit when at periapsis.".
} else {
sas off.
lock steering to retrograde.
print "Will shrink my orbit when at periapsis.".
}
wait until ship:obt:trueanomaly >= 0 and ship:obt:trueanomaly < 90.
print "Waiting until steering has settled in.".
wait until steeringmanager:angleerror < 5.
print "Burning until there's a crossing point.".
ullage_then_throttle(1, 10).
until intersect_ta >= 0 {
// using cruder, faster approximation for this repeated check:
set intersect_ta to orbit_cross_ta(ship:obt, other:obt, 10, 2).
}.
unlock throttle.
unlock steering.
// Now use the more precise measure once we know it will work:
set intersect_ta to orbit_cross_ta(ship:obt, other:obt, 10, 0.01).
}
}
if skips <= 1 {
set intersect_eta to eta_to_ta(ship:obt, intersect_ta).
set intersect_first_utime to time:seconds + intersect_eta.
set ta_offset_from_other to ta_offset(ship:obt, other:obt).
set other_intersect_ta to intersect_ta + ta_offset_from_other.
set other_intersect_eta to eta_to_ta(other:obt, other_intersect_ta).
print "intersect_ta is " + round(intersect_ta,1) + " deg ".
print " other_ta is " + round(other_intersect_ta,1) + " deg ".
print "intersect_eta is " + round(intersect_eta,0) + " seconds ".
print " other_eta is " + round(other_intersect_eta,1) + " seconds ".
// Obtain a list of the next 5 utimes that the target will cross
// the intersect point:
set rendezvous_utimes to list().
local i is 0.
from {local i is 0.} until i = 4 step {set i to i+1.} do {
rendezvous_utimes:add(time:seconds + other_intersect_eta + other:obt:period*i).
}
print "Now waiting until hitting the intersect point.".
set wait_left to 99999.
print " " at (0,0).
until wait_left <= 0 {
set wait_left to intersect_first_utime - time:seconds.
print "[[ Wait " + round(wait_left,0) + " s ]]" at (5,0).
if wait_left < 50 {
if warp > 0 {
set warp to 0.
}
sas off.
lock steering to prograde.
}
wait 0.
}
clearscreen.
print "Embiggening orbit until matching a rendezvous time.".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
print " ".
set rendezvous_tolerance_1 to 500. // (seconds).
set rendezvous_tolerance_2 to 100. // (seconds).
set rendezvous_tolerance_3 to 50. // (seconds).
set rendezvous_tolerance_4 to 3. // (seconds).
set found to false.
set my_rendezvous_utime to 0. // will calculate later in the loop.
set num_orbits to 0. // how many orbits until a hit.
// A list of previous time_diff for all 4x4 comparisons:
local prev_time_diffs is LIST(
LIST( 0, 0, 0, 0),
LIST( 0, 0, 0, 0),
LIST( 0, 0, 0, 0),
LIST( 0, 0, 0, 0)
).
local iterations to 0.
local rcs_adjusting is false.
set burn_start_time to time:seconds.
ullage_then_throttle(1, 10).
until found {
wait 0.1.
local i is 0.
until found or i = 4 {
set my_rendezvous_utime to burn_start_time + ship:obt:period * i.
print "[" + i + "] Compare my " + utime_to_eta_time(my_rendezvous_utime,1) + "s to target's:" at (0,3+5*i).
local j is 0.
until found or j = 4 {
local other_rendezvous_utime is rendezvous_utimes[j].
print (utime_to_eta_time(other_rendezvous_utime,1)+"s "):padleft(7) at (10*j ,4+5*i).
local time_diff is my_rendezvous_utime - other_rendezvous_utime.
print (round(time_diff)):tostring():padleft(5) at (10*j,5+5*i).
local diff_sign is (time_diff > 0).
local prev_diff_sign is (prev_time_diffs[i][j] > 0).
print (choose "+" if diff_sign else "-") + "/" +
(choose "+" if prev_diff_sign else "-") at (10*j ,6+5*i).
list engines in engs.
if not(rcs_adjusting) {
if abs(time_diff) < rendezvous_tolerance_1 {
lock throttle to 0.2.
}
if abs(time_diff) < rendezvous_tolerance_2 {
lock throttle to 0.05.
}
if abs(time_diff) < rendezvous_tolerance_3 {
lock throttle to 0.005.
}
}
if iterations >= 1 and (diff_sign <> prev_diff_sign) {
// We crossed the point of closest rendezvous, continuing
// in the same dirction now will make it worse.
if rcs_adjusting {
// If we did so while rcs adjusting, we're done.
set ship:control:fore to 0.
set found to true.
}
else {
// If we did so while main engine thrusting, then switch
// to RCS adjustnging mode and back up a bit until we
// cross nearest rendezvous again:.
lock throttle to 0.
set rcs_adjusting to true.
rcs on.
set ship:control:fore to -1. // start backing up a bit.
set num_orbits to i.
print "Fine Tuning with RCS backing up a bit now." at (5,2).
}
}
set prev_time_diffs[i][j] to time_diff.
set j to j+1.
}
set i to i+1.
}
set iterations to iterations + 1.
}
}
if skips <= 2 {
// Adjust utime a bit to account for how much deltaV burn.
set other_predict_V to velocityat(other, my_rendezvous_utime):orbit.
set my_predict_V to velocityat(ship, my_rendezvous_utime):orbit.
set deltaV to other_predict_V - my_predict_V.
set my_rendezvous_pre_time to my_rendezvous_utime - burn_seconds(deltaV:mag/2).
print "Found a matching time within " + num_orbits + " orbit(s)".
set rendezvous_eta to 99999.
until rendezvous_eta <= 0 {
set rendezvous_eta to my_rendezvous_pre_time - time:seconds.
print "[[ Wait " + round(rendezvous_eta,0) + " s ]]" at (0,0).
if rendezvous_eta < 50 {
if warp > 0 {
set warp to 0.
}
sas off.
lock steering to other:velocity:orbit - ship:velocity:orbit.
}
wait 0.
}.
print "Burning until rel vel killed.".
ullage_then_throttle(1, 10).
set rel_spd to -99999.
// Burn until either hitting zero rel vel, or rel vel starts
// getting bigger:
print "rel spd is now m/s" at (5,0).
until rel_spd >= 0 {
print round(rel_spd,1) + " " at (20,0).
wait 0.01.
set rel_spd to VDOT((ship:velocity:orbit - other:velocity:orbit), ship:facing:vector).
}.
lock throttle to 0.
print "Done".
unlock steering.
}
if skips <= 3 {
//
// Now get close.
//
print "Now easing closer to target.".
set maxAccel to ship:maxthrust / ship:mass.
local mysteer is other:position+(40*ship:north:vector).
sas off.
lock steering to mysteer.
lock rel_vel to ship:velocity:orbit - other:velocity:orbit.
until other:position:mag < 120 {
// Push toward until drifting fast enough at other:
print "... Pushing toward target faster".
lock mysteerpoint to other:position+(40*ship:north:vector).
sas off.
lock steering to mysteerpoint.
wait until
vang(mysteerpoint, ship:facing:forevector) < 2
and
abs(steeringmanager:angleerror) < 1.5.
list engines in engs.
push_rcs_until_ullage_ok(engs).
lock throttle to 1/(0.01*maxAccel).
wait until vdot(rel_vel,mysteerpoint:normalized) > 4+min(30,(mysteerpoint:mag/200)).
sas off.
lock steering to mysteer. // put it back to what it was.
// While drifting, get ready by aiming retro:
print "... Drifting toward target, aiming retro now".
lock throttle to 0.
set mysteer to -rel_vel.
wait until vang(rel_vel, other:position) > 80.
// Kill all speed once angle to target > 70 deg from my velocity.
set mysteer to - rel_vel:vec.
push_rcs_until_ullage_ok(engs).
lock throttle to rel_vel:mag/(0.05+maxAccel).
print "... Killing relative speed to zero.".
wait until
vdot(mysteer, rel_vel:normalized) > -0.1
and
abs(steeringmanager:angleerror) < 1.5.
lock throttle to 0.
// Repeat the above step until close enough.
}
}
print "Rendezvous program ending.".
function utime_to_eta_time {
parameter utime, decimals is 0.
return round(utime - time:seconds, decimals).
}
function ullage_then_throttle {
parameter throt, giveup, engs is 0.
if engs:istype("scalar") and engs = 0 {
list engines in engs.
}
push_rcs_until_ullage_ok( engs, giveup, false ).
lock throttle to throt.
}