Skip to content

Latest commit

 

History

History
93 lines (74 loc) · 5.37 KB

README.md

File metadata and controls

93 lines (74 loc) · 5.37 KB

Leveraging Multilingual Self-Supervised Pretrained Models for Sequence-to-Sequence End-to-End Spoken Language Understanding

[Paper]

NLU

Training

  1. Install "transformers<=4.19.0".
  2. Go to dataset directory: cd nlu/slurp/.
  3. Prepare data: ./prepare_data.py /path/to/slurp data.
  4. Train a model: ./finetune.sh (tested on A6000 GPU).
  5. Run evaluation: ./evaluate.py data/test.target output/test_generations.txt.

Alternatively, you can use the pretrained models hosted on Hugging Face Hub.

Pretrained Models

Dataset Directory Pretrained model
SLURP nlu/slurp akreal/mbart-large-50-finetuned-slurp
SLUE nlu/slue akreal/mbart-large-50-finetuned-slue
CATSLU nlu/catslu akreal/mbart-large-50-finetuned-catslu
MEDIA nlu/media akreal/mbart-large-50-finetuned-media
PortMEDIA-Dom nlu/portmedia_dom akreal/mbart-large-50-finetuned-portmedia-dom
PortMEDIA-Lang nlu/portmedia_lang akreal/mbart-large-50-finetuned-portmedia-lang

SLU

Training

  1. Install the regular ESPnet version.
  2. Copy the model configuration file from this repository: cp slu/slurp/train_asr_conformer_xlsr_mbart.yaml /path/to/espnet/egs2/slurp_entity/asr1/conf/
  3. Run the recipe: ./run.sh --asr_config conf/train_asr_conformer_xlsr_mbart.yaml.
  4. If you want to use pretrained Adaptor, download it from the link in the next section and run the recipe with it: ./run.sh --asr_config conf/train_asr_conformer_xlsr_mbart.yaml --pretrained_model downloads/conformer08x08h_d1024_xlsr_ts_lr5e-5_attcela_7kh_ave.pth:::decoder --asr_tag postdec-aed_7kh.

Pretrained Models

The following are SLU models trained with the Adaptor that is pretrained on 7k hours with PostDec-AED loss.

Dataset Recipe Pretrained model
SLURP slurp_entity Link
SLUE slue-voxpopuli Link
CATSLU catslu_entity Link
MEDIA media Link
PortMEDIA-Dom portmedia_dom Link
PortMEDIA-Lang portmedia_lang Link

Cross-lingual PortMEDIA-Lang SLU model finetuned from the MEDIA SLU model: Link.

Adaptor

Training

  1. Install the custom version of ESPnet: git clone --branch v.202207 --depth 1 git@github.com:espnet/espnet.git /path/to/espnet-adaptor-pretrain
  2. Copy the modifications: rsync -avh adaptor/espnet/ /path/to/espnet-adaptor-pretrain/
  3. Follow ESPnet installation instructions.
  4. Run the recipe: cd /path/to/espnet-adaptor-pretrain/egs2/commonvoice/asr1; ./run.sh

Pretrained Models

Loss Configuration Pretrained model
PreEnc MC conf/train_adaptor_conformer_preenc-mc.yaml Link
PreEnc CTC conf/train_adaptor_conformer_preenc-ctc.yaml Link
PostEnc MC conf/train_adaptor_conformer_postenc-mc.yaml Link
PostDec MC conf/train_adaptor_conformer_postdec-mc.yaml Link
PostDec AED conf/train_adaptor_conformer_postdec-aed.yaml Link
PreEnc CTC + PostDec AED conf/train_adaptor_conformer_preenc-ctc_postdec-aed.yaml Link
PreEnc CTC + PostDec AED + PostEnc MC conf/train_adaptor_conformer_preenc-ctc_postenc-mc_postdec-aed.yaml Link
PostEnc MC (1K hours English data) Link
PostDec AED (7K hours data) Link

Citation

@INPROCEEDINGS{10389655,
  author={Denisov, Pavel and Vu, Ngoc Thang},
  booktitle={2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)}, 
  title={Leveraging Multilingual Self-Supervised Pretrained Models for Sequence-to-Sequence End-to-End Spoken Language Understanding}, 
  year={2023},
  volume={},
  number={},
  pages={1-8},
  keywords={Training;Error analysis;Conferences;Predictive models;Benchmark testing;Filling;Data models;spoken language understanding;self-supervised learning;end-to-end;sequence-to-sequence;multilingual},
  doi={10.1109/ASRU57964.2023.10389655}
}