-
-
Notifications
You must be signed in to change notification settings - Fork 173
/
Copy pathrun_training_pipeline.py
123 lines (104 loc) · 5.29 KB
/
run_training_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
import os
import random
import sys
import torch
from Recipes.AlignerPipeline import run as aligner
from Recipes.BigVGAN_e2e import run as be2e
from Recipes.HiFiGAN_combined import run as HiFiGAN
from Recipes.HiFiGAN_e2e import run as e2e
from Recipes.ToucanTTS_IntegrationTest import run as tt_integration_test
from Recipes.ToucanTTS_Massive_Asian import run as asian
from Recipes.ToucanTTS_Massive_English_stage1 import run as eng1
from Recipes.ToucanTTS_Massive_English_stage2 import run as eng2
from Recipes.ToucanTTS_Massive_German import run as deu
from Recipes.ToucanTTS_Massive_stage1 import run as stage1
from Recipes.ToucanTTS_Massive_stage2 import run as stage2
from Recipes.ToucanTTS_Massive_stage3 import run as stage3
from Recipes.ToucanTTS_Nancy import run as nancy
from Recipes.finetuning_example_multilingual import run as fine_tuning_example_multilingual
from Recipes.finetuning_example_simple import run as fine_tuning_example_simple
pipeline_dict = {
# the finetuning examples
"finetuning_example_simple" : fine_tuning_example_simple,
"finetuning_example_multilingual": fine_tuning_example_multilingual,
# integration test
"tt_it" : tt_integration_test,
# regular ToucanTTS pipelines
"nancy" : nancy,
"eng1" : eng1,
"eng2" : eng2,
"deu" : deu,
"asian": asian,
"stage1" : stage1,
"stage2" : stage2,
"stage3" : stage3,
# training the aligner from scratch (not recommended, best to use provided checkpoint)
"aligner" : aligner,
# vocoder training (not recommended, best to use provided checkpoint)
"hifigan" : HiFiGAN,
"e2e" : e2e,
"be2e" : be2e
}
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Training with the IMS Toucan Speech Synthesis Toolkit')
parser.add_argument('pipeline',
choices=list(pipeline_dict.keys()),
help="Select pipeline to train.")
parser.add_argument('--gpu_id',
type=str,
help="Which GPU(s) to run on. If not specified runs on CPU, but other than for integration tests that doesn't make much sense.",
default="cpu")
parser.add_argument('--resume_checkpoint',
type=str,
help="Path to checkpoint to resume from.",
default=None)
parser.add_argument('--resume',
action="store_true",
help="Automatically load the highest checkpoint and continue from there.",
default=False)
parser.add_argument('--finetune',
action="store_true",
help="Whether to fine-tune from the specified checkpoint.",
default=False)
parser.add_argument('--model_save_dir',
type=str,
help="Directory where the checkpoints should be saved to.",
default=None)
parser.add_argument('--wandb',
action="store_true",
help="Whether to use weights and biases to track training runs. Requires you to run wandb login and place your auth key before.",
default=False)
parser.add_argument('--wandb_resume_id',
type=str,
help="ID of a stopped wandb run to continue tracking",
default=None)
args = parser.parse_args()
if args.finetune and args.resume_checkpoint is None and not args.resume:
print("Need to provide path to checkpoint to fine-tune from!")
sys.exit()
if args.gpu_id == "cpu":
os.environ["CUDA_VISIBLE_DEVICES"] = ""
device = torch.device("cpu")
print(f"No GPU specified, using CPU. Training will likely not work without GPU.")
gpu_count = 1 # for technical reasons this is set to one, indicating it's not mutli-GPU training, even though there is no GPU in this case
else:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = f"{args.gpu_id}"
device = torch.device("cuda")
print(f"Making GPU {os.environ['CUDA_VISIBLE_DEVICES']} the only visible device(s).")
gpu_count = len(args.gpu_id.replace(",", " ").split())
# example call for gpu_count training:
# torchrun --standalone --nproc_per_node=4 --nnodes=1 run_training_pipeline.py nancy --gpu_id "1,2,3"
torch.manual_seed(9665)
random.seed(9665)
torch.random.manual_seed(9665)
torch.multiprocessing.set_sharing_strategy('file_system')
pipeline_dict[args.pipeline](gpu_id=args.gpu_id,
resume_checkpoint=args.resume_checkpoint,
resume=args.resume,
finetune=args.finetune,
model_dir=args.model_save_dir,
use_wandb=args.wandb,
wandb_resume_id=args.wandb_resume_id,
gpu_count=gpu_count)