Skip to content

Latest commit

 

History

History
111 lines (91 loc) · 5.37 KB

README.md

File metadata and controls

111 lines (91 loc) · 5.37 KB

Focal Loss for Dense Object Detection

Abstract

This is a tensorflow re-implementation of Focal Loss for Dense Object Detection, and it is completed by YangXue.

1

Performance

Model Backbone Training data Val data mAP Inf time (fps) Model Link Train Schedule GPU Image/GPU Configuration File
Faster-RCNN ResNet50_v1 600 VOC07 trainval VOC07 test 73.09 - - - 1X GTX 1080Ti 1 -
FPN ResNet50_v1 600 VOC07 trainval VOC07 test 74.26 - - - 1X GTX 1080Ti 1 -
RetinaNet ResNet50_v1 600 VOC07 trainval VOC07 test 73.16 - - - 8X GeForce RTX 2080 Ti 1 cfgs_res50_voc07_v3.py
RetinaNet ResNet50_v1d 600 VOC07 trainval VOC07 test 73.26 - - - 8X GeForce RTX 2080 Ti 1 cfgs_res50_voc07_v4.py
RetinaNet ResNet50_v1d 600 VOC07 trainval VOC07 test 74.00 14.6 model - 4X GeForce RTX 2080 Ti 2 cfgs_res50_voc07_v5.py
RetinaNet ResNet50_v1d 600 VOC07+12 trainval VOC07 test 79.66 - - - 8X GeForce RTX 2080 Ti 1 cfgs_res50_voc0712_v1.py
RetinaNet ResNet101_v1d 600 VOC07+12 trainval VOC07 test 81.69 - - - 8X GeForce RTX 2080 Ti 1 cfgs_res50_voc0712_v4.py
RetinaNet ResNet101_v1d 800 VOC07+12 trainval VOC07 test 80.69 - - - 8X GeForce RTX 2080 Ti 1 cfgs_res50_voc0712_v3.py
RetinaNet ResNet50_v1d 600 COCO train2017 COCO val2017 (coco minival) 33.4 12.2 - 1x 8X GeForce RTX 2080 Ti 1 cfgs_res50_coco_1x_v4.py
RetinaNet ResNet50_v1d 600 COCO train2017 COCO val2017 (coco minival) 34.3 (paper: 34.0) 12.2 model 1x 4X GeForce RTX 2080 Ti 2 cfgs_res50_coco_1x_v5.py

My Development Environment

1、python3.5 (anaconda recommend)
2、cuda9.0
3、opencv(cv2)
4、tfplot (optional)
5、tensorflow >= 1.12

Download Model

Pretrain weights

1、Please download resnet50_v1, resnet101_v1 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、(Recommend in this repo) Or you can choose to use a better backbone, refer to gluon2TF.

Others

1、COCO dataset related

Compile

cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace

Train

1、If you want to train your own data, please note:

(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py     
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord.py 

2、Make tfrecord

cd $PATH_ROOT/data/io/  
python convert_data_to_tfrecord_coco.py --VOC_dir='/PATH/TO/JSON/FILE/' 
                                        --save_name='train' 
                                        --dataset='coco'

3、Multi-gpu train

cd $PATH_ROOT/tools
multi_gpu_train_batch.py

Eval

COCO

cd $PATH_ROOT/tools
python eval_coco.py --eval_data='/PATH/TO/IMAGES/'  
                    --eval_gt='/PATH/TO/TEST/ANNOTATION/'
                    --gpu='0'
                    
cd $PATH_ROOT/tools
python eval_coco_multiprocessing.py --eval_data='/PATH/TO/IMAGES/'  
                                    --eval_gt='/PATH/TO/TEST/ANNOTATION/'
                                    --gpus='0,1,2,3,4,5,6,7'           

PASCAL VOC

cd $PATH_ROOT/tools
python eval.py --eval_dir='/PATH/TO/IMAGES/'  
               --annotation_dir='/PATH/TO/TEST/ANNOTATION/'
               --gpu='0'
                    

Tensorboard

cd $PATH_ROOT/output/summary
tensorboard --logdir=.

3

4

Reference

1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet