-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathviztools.py
256 lines (185 loc) · 7.56 KB
/
viztools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#!/usr/bin/env python
import numpy as np
import argparse
import subprocess as sp
import os
import pickle
import h5py
from pdb2sql import pdb2sql
from deeprank.tools import sparse
from deeprank.learn import DataSet
def create3Ddata(mol_name, molgrp, root='./_tmp_h5x/'):
if not os.path.isdir(root):
os.mkdir(root)
outdir = root + mol_name + '/'
if not os.path.isdir(outdir):
os.mkdir(outdir)
# create the pdb file
pdb_name = outdir + 'complex.pdb'
if not os.path.isfile(pdb_name):
sqldb = pdb2sql(molgrp['complex'].value)
sqldb.exportpdb(pdb_name)
sqldb._close()
# get the grid
grid = get_points(molgrp)
# deals with the features
if 'mapped_features' in molgrp:
print('-- Get existing features')
data_dict = get_feature(molgrp)
else:
print('-- Map existing features')
data_dict = map_feature(molgrp)
# export the cube file
export_cube_files(data_dict,grid,outdir)
def get_points(mol_data):
try:
x = mol_data['grid_points/x'].value
y = mol_data['grid_points/y'].value
z = mol_data['grid_points/z'].value
except:
center = mol_data['grid_points/center'].value
npts = np.array([30,30,30])
res = np.array([1,1,1])
halfdim = 0.5*(npts*res)
low_lim = center-halfdim
hgh_lim = low_lim + res*(npts-1)
x = np.linspace(low_lim[0],hgh_lim[0],npts[0])
y = np.linspace(low_lim[1],hgh_lim[1],npts[1])
z = np.linspace(low_lim[2],hgh_lim[2],npts[2])
return {'x':x,'y':y,'z':z}
def get_feature(molgrp):
nx = len(molgrp['grid_points/x'])
ny = len(molgrp['grid_points/y'])
nz = len(molgrp['grid_points/z'])
shape = (nx,ny,nz)
mapgrp = molgrp['mapped_features']
data_dict = {}
# loop through all the features
for data_name in mapgrp.keys():
# create a dict of the feature {name : value}
featgrp = mapgrp[data_name]
for ff in featgrp.keys():
subgrp = featgrp[ff]
if not subgrp.attrs['sparse']:
data_dict[ff] = subgrp['value'].value
else:
spg = sparse.FLANgrid(sparse=True,index=subgrp['index'].value,value=subgrp['value'].value,shape=shape)
data_dict[ff] = spg.to_dense()
return data_dict
def map_feature(molgrp):
ds = DataSet(None,grid_info={'number_of_points':(30,30,30),'resolution':(1,1,1)},process=False)
feature_list = {}
feature_list['AtomicDensities'] = {'CA':3.5, 'C':3.5, 'N':3.5, 'O':3.5}
feature_list['Features'] = list(molgrp['features'].keys())
grid, npts = ds.get_grid(molgrp)
data_dict = {}
for feat_type,feat_names in feature_list.items():
if feat_type == 'AtomicDensities':
data = ds.map_atomic_densities(feat_names, molgrp, grid, npts, None, None)
k = 0
for atom_name in ['CA','CB','N','O']:
for chain in ['_chainA', '_chainB']:
data_dict[atom_name+chain] = data[k]
k+=1
elif feat_type == 'Features':
data = ds.map_feature(feat_names, molgrp, grid, npts, None, None)
k = 0
for feat in feat_names:
for chain in ['_chainA', '_chainB']:
data_dict[feat+chain] = data[k]
k+=1
return data_dict
def export_cube_files(data_dict,grid,export_path):
print('-- Export data to %s' %(export_path))
bohr2ang = 0.52918
# individual axis of the grid
x,y,z = grid['x'],grid['y'],grid['z']
# extract grid_info
npts = np.array([len(x),len(y),len(z)])
res = np.array([x[1]-x[0],y[1]-y[0],z[1]-z[0]])
# the cuve file is apparently give in bohr
xmin,ymin,zmin = np.min(x)/bohr2ang,np.min(y)/bohr2ang,np.min(z)/bohr2ang
scale_res = res/bohr2ang
# export files for visualization
for key,values in data_dict.items():
fname = export_path + '%s' %(key) + '.cube'
if not os.path.isfile(fname):
f = open(fname,'w')
f.write('CUBE FILE\n')
f.write("OUTER LOOP: X, MIDDLE LOOP: Y, INNER LOOP: Z\n")
f.write("%5i %11.6f %11.6f %11.6f\n" % (1,xmin,ymin,zmin))
f.write("%5i %11.6f %11.6f %11.6f\n" % (npts[0],scale_res[0],0,0))
f.write("%5i %11.6f %11.6f %11.6f\n" % (npts[1],0,scale_res[1],0))
f.write("%5i %11.6f %11.6f %11.6f\n" % (npts[2],0,0,scale_res[2]))
# the cube file require 1 atom
f.write("%5i %11.6f %11.6f %11.6f %11.6f\n" % (0,0,0,0,0))
last_char_check = True
for i in range(npts[0]):
for j in range(npts[1]):
for k in range(npts[2]):
f.write(" %11.5e" % values[i,j,k])
last_char_check = True
if k % 6 == 5:
f.write("\n")
last_char_check = False
if last_char_check:
f.write("\n")
f.close()
def launchVMD(mol_name, root='./_tmp_h5x/'):
export_path = root + mol_name + '/'
exec_fname = 'loadData.vmd'
# export VMD script if cube format is required
fname = export_path + exec_fname
f = open(fname,'w')
f.write('# can be executed with vmd -e loadData.vmd\n\n')
# write all the cube file in one given molecule
cube_files = np.sort(list(filter(lambda x: '.cube' in x,os.listdir(export_path))))
write_molspec_vmd(f, cube_files[0],'IsoSurface','Volume')
for idata in range(1,len(cube_files)):
f.write('mol addfile ' + '%s\n' %(cube_files[idata]))
f.write('mol rename top grid_data')
# load the complex
write_molspec_vmd(f,'complex.pdb','Cartoon','Chain')
# close file
f.close()
# launch VMD
sw,sh = 1050,600
w,h = 600,600
vmd_option = '-pos %f %f -size %f %f' %(sw,sh,w,h)
vmd_file = ' -e ' + exec_fname
sp.Popen('vmd ' + vmd_option + vmd_file, cwd = export_path,shell = True)
# quick shortcut for writting the vmd file
def write_molspec_vmd(f,name,rep,color):
f.write('\nmol new %s\n' %name)
if rep == 'IsoSurface':
f.write('mol delrep 0 top\nmol representation %s 0.02 0.0 0.0 0.0\n' %rep)
else:
f.write('mol delrep 0 top\nmol representation %s\n' %rep)
if color is not None:
f.write('mol color %s \n' %color)
f.write('mol addrep top\n\n')
def launchPyMol(mol_name, root='./_tmp_h5x/'):
export_path = root + mol_name + '/'
exec_fname = 'loadData.py'
fname = export_path + exec_fname
f = open(fname,'w')
f.write('# can be executed with pymol -qRr loadData.py\n\n')
f.write('import os\n')
f.write('import pymol\n')
f.write('pymol.finish_launching()\n\n')
f.write("# load the molecule\n")
f.write("pymol.cmd.load('complex.pdb','complex')\n")
f.write("pymol.util.cbc(selection='(all)',first_color=7,quiet=1,legacy=0,_self=pymol.cmd)\n")
f.write("pymol.cmd.show('stick','complex')\n\n")
f.write("# load the molecule\n")
f.write("cube_files = list(filter(lambda x: '.cube' in x,os.listdir('./')))\n")
# load the cube files
f.write("for f in cube_files:\n")
f.write(" fname = os.path.splitext(f)[0]\n")
f.write(" pymol.cmd.load(f)\n")
f.write(" pymol.cmd.isosurface('pos_'+fname,fname,level=0.05)\n")
f.write(" pymol.cmd.isosurface('neg_'+fname,fname,level=-0.05)\n\n")
f.write("pymol.cmd.disable('all')\n")
f.write("pymol.cmd.enable('complex')\n\n")
f.close()
sp.Popen('pymol -qQr ' + exec_fname, cwd = export_path,shell = True)