Skip to content

Latest commit

 

History

History
76 lines (48 loc) · 2.54 KB

README.md

File metadata and controls

76 lines (48 loc) · 2.54 KB

Cifar 10 Neural Network

Overview

This repository contains all the necessary code, documentation, and resources to help you understand, implement, and train the neural network model effectively.

Table of Contents

Introduction

The CIFAR-10 dataset is a well-known benchmark in the field of computer vision, consisting of 60,000 32x32 color images in 10 different classes, with 6,000 images per class. In this repository, we present a state-of-the-art neural network architecture designed to achieve high accuracy on this challenging dataset. Our architecture leverages the power of deep learning to achieve outstanding results, and we provide all the necessary tools for you to understand, implement, and extend this model.

Training

We use Google Colab to train this neural network, in this case we use the Nvidia Tesla T4 as GPU

Google Colab

Architecture

Results

Note: The pre trainer model (use separate) tested are the follow

  • NASNetMobile
  • MobileNetV2
  • MobileNetV3Large
  • VGG19
  • VGG16
  • DenseNet201
  • ResNet101 The results show an improvement in precision and loss on VGG19, VGG16 , DenseNet201, MobileNetV2

Test yourself

    python test.py --model cifar10.h5 --image ./docs/test.jpg
docker run -d --name cifar_10 -p8000:80 danielsarmiento04/cifar10:4

License

This repository is licensed under the Apache 2.0 License.

Reference

A. Bäuerle, C. van Onzenoodt and T. Ropinski, "Net2Vis – A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations," in IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 6, pp. 2980-2991, 1 June 2021, doi: 10.1109/TVCG.2021.3057483.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

Skapura, D. M. (1996). Building neural networks. Addison-Wesley Professional.

TensorFlow Developers. (2023). TensorFlow (v2.15.0). Zenodo. https://doi.org/10.5281/zenodo.10126399

Platzi. (n.d.). Curso Profesional de Redes neuronales con tensorflow. http://platzi.com/cursos/redes-neuronales-tensorflow/. https://platzi.com/cursos/redes-neuronales-tensorflow/