-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loading.py
277 lines (232 loc) · 8.34 KB
/
data_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import json
import random
import re
from pathlib import Path
from typing import List, Dict
from datasets import load_dataset
from fire import Fire
from pydantic import BaseModel
from utils import find_math_answer
class ReasonSample(BaseModel):
question: str
accept_explanation: str = ""
accept_answer: str = ""
prompt: str = ""
answer_prefix: str = ""
raw_outputs: List[str] = []
preds: List[str] = []
info: dict = {}
class ReasonData(BaseModel):
samples: List[ReasonSample]
def analyze(self, seed: int = 0):
random.seed(seed)
for sample in random.sample(self.samples, k=10):
print(sample.model_dump_json(indent=2))
info = dict(samples=len(self.samples))
print(json.dumps(info, indent=2))
@classmethod
def load(cls, path: str):
samples = []
with open(path) as f:
for line in f:
samples.append(ReasonSample(**json.loads(line)))
print(dict(path=path, samples=len(samples)))
return cls(samples=samples)
@classmethod
def load_from_huggingface(cls, data_split: str):
raise NotImplementedError
def save(self, path: str):
with open(path, "w") as f:
for sample in self.samples:
print(sample.model_dump_json(), file=f)
print(dict(path=path, samples=len(self.samples)))
class GSM8KData(ReasonData):
@classmethod
def load_from_huggingface(cls, data_split: str):
samples = []
for raw in load_dataset("gsm8k", "main", split=data_split):
explanation, answer = raw["answer"].split("####")
explanation = re.sub(r"<<[^>]+>>", "", explanation) # Remove angle brackets
samples.append(
ReasonSample(
question=raw["question"].strip(),
accept_explanation=explanation.strip(),
accept_answer=answer.strip(),
)
)
return cls(samples=samples)
class MATHData(ReasonData):
@classmethod
def load_from_huggingface(cls, data_split: str):
samples = []
for raw in load_dataset("competition_math", "rb", split=data_split):
answer = find_math_answer(raw["solution"])
samples.append(
ReasonSample(
question=raw["problem"].strip(),
accept_explanation=raw["solution"].strip(),
accept_answer=answer.strip(),
)
)
return cls(samples=samples)
class MMLUData(ReasonData):
@classmethod
def load_from_huggingface(cls, data_split: str):
samples = []
for raw in load_dataset(
"chiayewken/mmlu",
split="train+validation" if data_split == "train" else "test",
):
options = [raw["A"], raw["B"], raw["C"], raw["D"]]
i = "ABCD".index(raw["target"])
template = "({}) {}"
answer = template.format(raw["target"], options[i]).split()[0]
suffix = "\n".join(
[template.format("ABCD"[j], o) for j, o in enumerate(options)]
)
assert answer in suffix
samples.append(
ReasonSample(
question=raw["input"].strip() + "\n" + suffix,
accept_explanation="",
accept_answer=answer,
)
)
return cls(samples=samples)
class MMLUStemData(ReasonData):
@classmethod
def get_subsets(cls) -> List[str]:
return [
"abstract_algebra",
"astronomy",
"college_biology",
"college_chemistry",
"college_computer_science",
"college_mathematics",
"college_physics",
"computer_security",
"conceptual_physics",
"electrical_engineering",
"elementary_mathematics",
"high_school_biology",
"high_school_chemistry",
"high_school_computer_science",
"high_school_mathematics",
"high_school_physics",
"high_school_statistics",
"machine_learning",
]
@classmethod
def load_from_huggingface(cls, data_split: str):
subsets = set(cls.get_subsets())
samples = []
for raw in load_dataset(
"chiayewken/mmlu",
split="test" if data_split == "train" else "train+validation",
):
if raw["subset"] not in subsets:
continue
options = [raw["A"], raw["B"], raw["C"], raw["D"]]
i = "ABCD".index(raw["target"])
template = "({}) {}"
answer = template.format(raw["target"], options[i]).split()[0]
suffix = "\n".join(
[template.format("ABCD"[j], o) for j, o in enumerate(options)]
)
assert answer in suffix
samples.append(
ReasonSample(
question=raw["input"].strip() + "\n" + suffix,
accept_explanation="",
accept_answer=answer,
)
)
return cls(samples=samples)
class CSQAData(ReasonData):
@classmethod
def load_from_huggingface(cls, data_split: str):
samples = []
for raw in load_dataset(
"tau/commonsense_qa",
split="validation" if data_split == "test" else "train",
):
options = raw["choices"]["text"]
labels = "".join(raw["choices"]["label"])
i = labels.index(raw["answerKey"])
template = "({}) {}"
answer = template.format(raw["answerKey"], options[i]).split()[0]
suffix = "\n".join(
[template.format(labels[j], o) for j, o in enumerate(options)]
)
assert answer in suffix
samples.append(
ReasonSample(
question=raw["question"].strip() + "\n" + suffix,
accept_explanation="",
accept_answer=answer,
)
)
return cls(samples=samples)
class WINOGRANDEData(ReasonData):
@classmethod
def load_from_huggingface(cls, data_split: str):
samples = []
for raw in load_dataset(
"allenai/winogrande",
name="winogrande_debiased",
split="validation" if data_split == "test" else "train",
):
options = [raw["option1"], raw["option2"]]
labels = "12"
i = labels.index(raw["answer"])
template = "({}) {}"
answer = template.format(raw["answer"], options[i]).split()[0]
suffix = "\n".join(
[template.format(labels[j], o) for j, o in enumerate(options)]
)
assert answer in suffix
samples.append(
ReasonSample(
question=raw["sentence"].strip() + "\n" + suffix,
accept_explanation="",
accept_answer=answer,
)
)
return cls(samples=samples)
def select_data(name: str, **kwargs):
if name == "gsm8k":
return GSM8KData.load_from_huggingface(**kwargs)
elif name == "math":
return MATHData.load_from_huggingface(**kwargs)
elif name == "mmlu":
return MMLUData.load_from_huggingface(**kwargs)
elif name == "mmlu_stem":
return MMLUStemData.load_from_huggingface(**kwargs)
elif name == "csqa":
return CSQAData.load_from_huggingface(**kwargs)
elif name == "winogrande":
return WINOGRANDEData.load_from_huggingface(**kwargs)
else:
raise KeyError(name)
def test_data(name: str, **kwargs):
data = select_data(name, **kwargs)
data.analyze()
class DataInfo(BaseModel):
info: Dict[str, dict]
@classmethod
def load(cls, path: str):
if not Path(path).exists():
print("New DataInfo: {}")
return cls(info={})
with open(path) as f:
info = json.load(f)
return cls(info=info)
def save(self, path: str):
Path(path).parent.mkdir(exist_ok=True, parents=True)
with open(path, "w") as f:
json.dump(self.info, f, indent=2)
print(json.dumps(self.info, indent=2))
def add_new_data(self, name: str, info: dict):
self.info[name] = info
if __name__ == "__main__":
Fire()