Skip to content

Latest commit

 

History

History
79 lines (58 loc) · 2.31 KB

WEIGHT.md

File metadata and controls

79 lines (58 loc) · 2.31 KB

Model Weights Preparation

准备好后的完整目录结构

├── cache
│   ├── ckpt
│   │   ├── bert-base-uncased
│   │   ├── blip2
│   │   │   ├── blip2_pretrained_flant5xxl.pth
│   │   ├── eva
│   │   │   ├── eva_vit_g.pth
│   │   ├── Qwen7B-chat
│   │   │   ├── config.json
│   │   │   ├── ...
├── ...
├── lavis
│   ├── output
│   │   ├── pp_7b_video
│   │   │   ├── pretrain
│   │   │   |   ├── global_step2181
│   │   │   |   |   ├── model.pth
│   │   │   ├── sft_video
│   │   │   |   ├── global_step2005
│   │   │   |   |   ├── unfreeze_llm_model.pth

准备过程

请将模型权重下载后都放在 cache/ckpt

mkdir cache
cd cache
mkdir ckpt
mkdir dataset

1.下载BLIP2的相关权重

(a) eva vit-g

eva_vit_g.pth

wget https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth

(b) bert-base-uncased

huggingface,下载如下的文件即可

image-20231026013454256

(c) blip2_pretrained_flant5xxl

blip2_pretrained_flant5xxl.pth

wget https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth

2.下载Qwen7B-Chat的权重

Qwen-7B-chat huggingface

3.获得一阶段pretrain后的checkpoint(optional,如果你想直接在这上面做sft的话)

(建议放入 lavis/output/pp_7b_video/pretrain/global_step2181)

在本仓库的release里放有checkpoint,可以直接下载

wget https://github.com/Coobiw/MiniGPT4Qwen/releases/download/MPP-Qwen-Next_ckpt-and-data/ckpt-and-data.zip
unzip ckpt-and-data.zip

4.sft后的权重(百度网盘/modelscope)