-
Notifications
You must be signed in to change notification settings - Fork 1
/
README.Rmd
144 lines (96 loc) · 7.45 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
output: github_document
editor_options:
chunk_output_type: console
bibliography: vignettes/PRDA.bib
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
library(PRDA)
```
# PRDA: Prospective and Retrospective Design Analysis
<!-- badges: start -->
[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)
[![CRAN status](https://www.r-pkg.org/badges/version/PRDA)](https://CRAN.R-project.org/package=PRDA)
[![AppVeyor build status](https://ci.appveyor.com/api/projects/status/github/ClaudioZandonella/PRDA?branch=master&svg=true)](https://ci.appveyor.com/project/ClaudioZandonella/PRDA/branch/master)
[![Travis build status](https://travis-ci.org/ClaudioZandonella/PRDA.svg?branch=master)](https://travis-ci.org/ClaudioZandonella/PRDA)
[![Codecov test coverage](https://codecov.io/gh/ClaudioZandonella/PRDA/branch/master/graph/badge.svg)](https://codecov.io/gh/ClaudioZandonella/PRDA/branch/master)
[![DOI](https://zenodo.org/badge/212573857.svg)](https://zenodo.org/badge/latestdoi/212573857)
<hr>
<!-- badges: end -->
{PRDA} allows performing a prospective or retrospective design analysis to evaluate inferential risks (i.e., power, Type M error, and Type S error) in a study considering Pearson's correlation between two variables or mean comparisons (one-sample, paired, two-sample, and Welch's *t*-test).
For an introduction to design analysis and a general overview of the package see `vignette("PRDA")`.
Examples for retrospective design analysis and prospective design analysis are provided in `vignette("retrospective")` and `vignette("prospective")` respectively.
All the documentation is available at https://claudiozandonella.github.io/PRDA/.
## Installation
You can install the released version of PRDA from [CRAN](https://CRAN.R-project.org/package=PRDA) with:
``` r
install.packages("PRDA")
```
And the development version from [GitHub](https://github.com/ClaudioZandonella/PRDA/tree/master) with:
``` r
# install.packages("devtools")
devtools::install_github("ClaudioZandonella/PRDA",
build_vignettes = TRUE)
```
## The Package
{PRDA} package can be used for Pearson's correlation between two variables or mean comparisons (i.e., one-sample, paired, two-sample, and Welch's t-test) considering an hypothetical value of *ρ* or Cohen's *d* respectively. See `vignette("retrospective")` and `vignette("prospective")` to know how to set function arguments for the different effect types.
### Functions
In {PRDA} there are two main functions `retrospective()` and `prospective()`.
#### • `retrospective()`
Given the hypothetical population effect size and the study sample size, the function `retrospective()` performs a retrospective design analysis. According to the defined alternative hypothesis and the significance level, the inferential risks (i.e., Power level, Type M error, and Type S error) are computed together with the critical effect value (i.e., the minimum absolute effect size value that would result significant).
Consider a study that evaluated the correlation between two variables with a sample of 30 subjects. Suppose that according to the literature the hypothesized effect is *ρ* = .25. To evaluate the inferential risks related to the study we use the function `retrospective()`.
```{r retrospective,}
set.seed(2020) # set seed to make results reproducible
retrospective(effect_size = .25, sample_n1 = 30,
test_method = "pearson")
```
In this case, the statistical power is almost 30% and the associated Type M error and Type S error are respectively around 1.80 and 0.003. That means, statistical significant results are on average an overestimation of 80% of the hypothesized population effect and there is a .3% probability of obtaining a statistically significant result in the opposite direction.
To know more about function arguments and further examples see the function documentation `?retrospective` and `vignette("retrospective")`.
#### • `prospective()`
Given the hypothetical population effect size and the required power level, the function `prospective()` performs a prospective design analysis. According to the defined alternative hypothesis and the significance level, the required sample size is computed together with the associated Type M error, Type S error, and the critical effect value (i.e., the minimum absolute effect size value that would result significant).
Consider a study that will evaluate the correlation between two variables. Knowing from the literature that we expect an effect size of *ρ* = .25, the function `prospective()` can be used to compute the required sample size to obtain a power of 80%.
```{r prospective}
prospective(effect_size = .25, power = .80, test_method = "pearson",
display_message = FALSE)
```
The required sample size is $n=122$, the associated Type M error is around 1.10 and the Type S error is approximately 0.
To know more about function arguments and further examples see the function documentation `?prospective` and `vignette("prospective")`.
### Hypothetical effect size
The hypothetical population effect size can be defined as a single value according to previous results in the literature or experts indications. Alternatively, {PRDA} allows users to specify a distribution of plausible values to account for their uncertainty about the hypothetical population effect size. To know how to specify the hypothetical effect size according to a distribution and an example of application see `vignette("retrospective")`.
## Contributing to PRDA
The PRDA package is still in the early stages of its life. Thus, surely there are many bugs to fix and features to propose. Anyone is welcome to contribute to the PRDA package.
Please note that this project is released under a [Contributor Code of Conduct](https://www.contributor-covenant.org/). By contributing to this project, you agree to abide by its terms.
#### Bugs and New Features
To propose a new feature or to report a bug, please open an issue on [GitHub](https://github.com/ClaudioZandonella/PRDA/issues). See [Community guidelines](https://github.com/ClaudioZandonella/PRDA/blob/master/CONTRIBUTING.md).
#### Future Plans
- Improve compute time by parallelizing the code
- Implement design analysis in the case of linear regression models
## Citation
To cite {PRDA} in publications use:
Zandonella Callegher, C., Pastore, M., Andreella, A., Vesely, A., Toffalini, E., Bertoldo, G., & Altoè G. (2020). PRDA: Prospective and Retrospective Design Analysis (Version 1.0.0). Zenodo. https://doi.org/10.5281/zenodo.4044214
A BibTeX entry for LaTeX users is
```{}
@Misc{,
author = {Zandonella Callegher, Claudio and Pastore, Massimiliano and Andreella, Angela and
Vesely, Anna and Toffalini, Enrico and Bertoldo, Giulia and Altoè, Gianmarco},
title = {PRDA: Prospective and Retrospective Design
Analysis},
year = 2020,
publisher = {Zenodo},
version = {1.0.0},
doi = {10.5281/zenodo.4044214},
url = {https://doi.org/10.5281/zenodo.4044214}
}
```
---
nocite: |
@altoeEnhancingStatisticalInference2020, @bertoldoDesigningStudiesEvaluating2020, @gelmanPowerCalculationsAssessing2014
...
## References