forked from zhipeng-wei/PNA-PatchOut
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
71 lines (59 loc) · 2.39 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import torch
import argparse
from torch.utils.data import DataLoader
import os
import pandas as pd
import time
from dataset import AdvDataset
from model import get_model
from utils import BASE_ADV_PATH, accuracy, AverageMeter
def arg_parse():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--adv_path', type=str, default='', help='the path of adversarial examples.')
parser.add_argument('--gpu', type=str, default='0', help='gpu device.')
parser.add_argument('--batch_size', type=int, default=20, metavar='N',
help='input batch size for reference (default: 16)')
parser.add_argument('--model_name', type=str, default='', help='')
args = parser.parse_args()
args.adv_path = os.path.join(BASE_ADV_PATH, args.adv_path)
return args
if __name__ == '__main__':
args = arg_parse()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# Loading dataset
dataset = AdvDataset(args.model_name, args.adv_path)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=4)
print (len(dataset))
# Loading model
model = get_model(args.model_name)
model.cuda()
model.eval()
# main
top1 = AverageMeter()
top5 = AverageMeter()
batch_time = AverageMeter()
prediction = []
gts = []
with torch.no_grad():
end = time.time()
for batch_idx, batch_data in enumerate(data_loader):
if batch_idx%10 == 0:
print ('Ruing batch_idx', batch_idx)
batch_x = batch_data[0].cuda()
batch_y = batch_data[1].cuda()
batch_name = batch_data[2]
output = model(batch_x)
acc1, acc5 = accuracy(output.detach(), batch_y, topk=(1, 5))
top1.update(acc1.item(), batch_x.size(0))
top5.update(acc5.item(), batch_x.size(0))
batch_time.update(time.time() - end)
end = time.time()
_, pred = output.detach().topk(1, 1, True, True)
pred = pred.t()
prediction += list(torch.squeeze(pred.cpu()).numpy())
gts += list(batch_y.cpu().numpy())
df = pd.DataFrame(columns = ['path', 'pre', 'gt'])
df['path'] = dataset.paths[:len(prediction)]
df['pre'] = prediction
df['gt'] = gts
df.to_csv(os.path.join(args.adv_path, 'prediction-model_{}-top1_{:.3f}.csv'.format(args.model_name, top1.avg)), index=False)