-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPresentation.tex
413 lines (363 loc) · 14.6 KB
/
Presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
\documentclass{beamer}
\usepackage[english]{babel}
\usepackage{calc}
\usepackage[absolute,overlay]{textpos}
\usepackage{amsmath, amsthm, amssymb, enumerate}
\usepackage{mathtools}
\usepackage{blkarray}
\usepackage{tikz}
\usepackage{tikz-cd}
\usepackage{quiver}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{standalone}
\usepackage{yhmath}
\usetikzlibrary{matrix,decorations.pathreplacing,calc,positioning}
\useoutertheme{split}
\setbeamertemplate{navigation symbols}{}
\newcommand{\unc}[1]{\uncover<#1->}
\def\rmin{\ensuremath\textcolor{red}{-} }
\def\bplus{\ensuremath\textcolor{blue}{+} }
\input{SnakeGraphGeneratorImages}
\usetheme{CambridgeUS}
\usecolortheme{beaver}
\def\s{\ensuremath\mathcal{S}}
\newcommand{\pal}[1]{{#1}_{\leftrightarrow}}
\title[Cluster algebras and Frobenius' conjecture]{Combinatorial aspects of surface Cluster algebras and applications to Frobenius' conjecture}
\institute[VU]{Vrije Universiteit}
\author[Andrea Bonucci]{Andrea Bonucci\\{\small Supervised by: Dr. {\.{I}}lke {\c{C}}anak{\c{c}}{\i}}}
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Overview}
\tableofcontents[currentsection]
\end{frame}
}
\begin{document}
\maketitle
\section{Introduction to Cluster algebras}
\begin{frame}{Introduction}
\begin{figure}
\centering
\includegraphics[width=0.35\textwidth]{Images/fominphoto.jpg}
\hfill
\includegraphics[width=0.4\textwidth]{Images/zelevinskiphoto.jpeg}
\caption{Cluster algebra was first introduced, in 2002, by Sergey Fomin and Andrei Zelevinsky.}
\label{fig:my_label}
\end{figure}
\end{frame}
\begin{frame}{Introduction}
Where are Cluster algebras encountered?
\pause
\begin{itemize}
\item Frieze patterns,
\item Triangulated surfaces,
\item Coxeter groups,
\item Number theory,
\item Hyperbolic geometry,
\item Combinatorics,
\item Quiver representations...
\end{itemize}
\end{frame}
\begin{frame}{Introduction}
Where are Cluster algebras encountered?
\begin{itemize}
\item Frieze patterns,
\item \textcolor{red}{Triangulated surfaces},
\item Coxeter groups,
\item \textcolor{red}{Number theory},
\item \textcolor{red}{Hyperbolic geometry},
\item \textcolor{red}{Combinatorics},
\item Quiver representations...
\end{itemize}
\end{frame}
\begin{frame}{Cluster algebras}
$(\mathcal{G}, \cdot)$ a free abelian group with basis $\{y_1,\dots,y_n\}$.
\pause
Define $\oplus$ by
\begin{equation*}
\prod y_j^{a_j}\oplus\prod y_j^{b_j} = \prod y_j^{\min(a_j,b_j)};
\end{equation*}
\pause
e.g. $y_1^3y_2^{-4}y_3\oplus y_1^{-1}$ $= y_1^{-1}y_2^{-4}$.
\end{frame}
\begin{frame}{Cluster algebras}
Consider $(\mathcal{G}, \oplus, \cdot)$; \pause then take its group ring $\mathbb{Z}\mathcal{G}$ (also known as a \emph{tropical semifield}). This will be our ambient field\footnote{$\mathbb{Z}\mathcal{G}$ is exactly the ring of Laurent polynomials.}.
\end{frame}
%\begin{frame}{Cluster algebras}
% A \emph{Cluster algebra} $\mathcal{A} = \mathcal{A}(\mathbf{x},\mathbf{y},\mathcal{Q})$,
% where,
% \pause
% \begin{itemize}
% \item $\mathbf{x}$ is an $n$-tuple of variables, called the initial \emph{Cluster};
% \pause
% \item $\mathbf{y}$ is the basis of our free abelian group; called the initial \emph{coefficients};
% \pause
% \item $\mathcal{Q}$ is a \emph{cluster Quiver}.
% \end{itemize}
%\end{frame}
\begin{frame}{Cluster algebras}
A \emph{seed} $(\mathbf{x},\mathbf{y},\mathcal{Q})$ determines the corresponding Cluster algebra $\mathcal{A} = \mathcal{A}(\mathbf{x},\mathbf{y},\mathcal{Q})$ through a few rules; where
\pause
\begin{itemize}
\item $\mathbf{x}=(x_1,\dots,x_n)$ is the $n$-tuple of variables, called the \emph{initial cluster}; e.g. in the setting of triangulated polygons, these are precisely the diagonals of the triangulation.
\pause
\item $\mathbf{y}=(y_1,\dots,y_n)$ is the $n$-tuple of generators, called the \emph{initial coefficients}; e.g. in the setting of Conway-Coxeter Frieze patterns, all these variables are equal to 1.
\pause
\item $\mathcal{Q}$ a cluster quiver.
\end{itemize}
\end{frame}
\begin{frame}{Cluster algebras}
A \emph{quiver} $\mathcal{Q}$ is a directed graph; i.e. a $4$-tuple $(\mathcal{Q}_0, \mathcal{Q}_1, h, t)$.
\begin{itemize}
\item $\mathcal{Q}_0$ is the set of vertices $\{1,2,\dots, n\}$; \pause
\item $\mathcal{Q}_1$ is the set of arrows,\pause
\item $h,t : \mathcal{Q}_0 \to \mathcal{Q}_1$, where $h$ maps the head of the arrow and $t$ maps the tail, each to the appropriate vertex.
\end{itemize}
\pause
\begin{figure}[H]
\centering
\includegraphics[width = 11 cm]{Images/quivers.png}
\caption{Example of 2 \emph{cluster quivers} (left and rightmost) and a non-cluster quiver (middle)}
\label{fig:my_label}
\end{figure}
\end{frame}
\begin{frame}{Cluster algebras}
The Cluster algebra is generated by applying a recursive method to the initial seed, called a \emph{cluster mutation}. A \emph{cluster mutation} $\mu_k$ acts on $\bold{x}$ as follows; $\mu_k((x_1,\dots,x_k,\dots, x_n)) = (x_1,\dots,x'_k,\dots,x_n)$, where; \pause
\begin{equation*}
x'_k = \dfrac{1}{y_k \oplus 1}\dfrac{y_k\prod_{i \to k}x_i + \prod_{k \to j}x_j}{x_k}.
\end{equation*}
\end{frame}
\begin{frame}{Cluster algebras}
A mutation $\mu_k$ also yields a new quiver $\mathcal{Q}'$ in the following way: \pause
\begin{itemize}
\item [1.] For any path $i \to k \to j$ add an arrow $i \to j$;\pause
\item[2.] Invert all arrows going into, or coming out from, vertex $k$; \pause
\item[3.] Cancel any 2-cycle.
\end{itemize}
\pause
\begin{figure}[H]
\centering
\includegraphics[width = 10 cm]{Images/mutationexample.png}
\caption{Example of mutation.}
\label{fig:my_label}
\end{figure}
\end{frame}
\section{Frobenius' Conjecture}
\begin{frame}{Frobenius' Conjecture}
Markov's equation:
\begin{equation*}
x^2 + y^2 + z^2 = 3xyz;
\end{equation*}
\\
\pause
e.g. $(1, 5, 13), (5, 13, 194), (1, 89, 233), (5, 29, 433)$.
\end{frame}
\begin{frame}{Frobenius' Conjecture}
\begin{block}{Conjecture}
Given any two ordered\footnote{An \emph{ordered} Markov triple is a solution $(a,b,c)$ to Markov's equation, such that $a \leq b \leq c$.} Markov triples $(a_1,b_1,c_1)$ and $(a_2,b_2,c_2)$, if $c_1 = c_2$, then $a_1=a_2$ and $b_1 = b_2$.
\end{block}
\end{frame}
\section{Connection to Cluster algebras}
\begin{frame}{Connection?}
\centering
How does Cluster algebra factor in when thinking about Frobenius' conjecture?
\end{frame}
\begin{frame}{Connection?}
Consider the triangulated punctured torus $\mathbb{T}^2$, as the quotient space
\begin{equation*}
\mathbb{T}^2 = I \times I/\sim_{vert}/\sim_{hor},
\end{equation*}
where $I = [0,1] \subset \mathbb{R}$ and $\sim_{vert}$ and $\sim_{hor}$ is the equivalence relation $(x,1)\sim_{vert}(x,0))$, and $(0,y)\sim_{hor}(1,y)$...
\pause
\begin{figure}
\centering
\includegraphics[width = 5 cm]{figures/Torus.tex}
\end{figure}
\end{frame}
\begin{frame}{Connection?}
\begin{figure}
\centering\includegraphics{figures/TriangTorusMPOrient.tex}
\end{figure}
\end{frame}
\begin{frame}{Connection?}
\begin{figure}
\centering
\includegraphics[width = 5 cm
]{Images/MarkovQuiverImgPres.png}
\end{figure}
\end{frame}
\begin{frame}{Connection?}
Applying a mutation at any vertex, say 1, yields the following Cluster variables; \pause
\begin{align*}
(x_1,x_2,x_3) \mapsto &((x_2^2 + x^2_3)/x_1, x_2,x_3) \\
=&(3x_2x_3 - x_1,x_2,x_3).
\end{align*} \pause
\begin{alertblock}{Recall}
A \emph{cluster mutation} $\mu_k$ acts on $\bold{x}$ as follows; $\mu_k((x_1,\dots,x_k,\dots, x_n)) = (x_1,\dots,x'_k,\dots,x_n)$, where; \pause
\begin{equation*}
x'_k = \dfrac{1}{y_k \oplus 1}\dfrac{y_k\prod_{i \to k}x_i + \prod_{k \to j}x_j}{x_k}.
\end{equation*}
\end{alertblock}
\end{frame}
\begin{frame}{Connection?}
\setbeamercovered{transparent}
Observe that by starting with $(x_1,x_2,x_3) = (1,1,1)$ (the smallest Markov triple), we obtain \pause
\begin{align*}
\mu_1(1,1,1) &= (2,1,1) \sim (1,1,2), \\ \pause
\mu_1(1,1,2) &= (5,1,2) \sim (1,2,5), \\ \pause
\mu_1(1,2,5) &= (29,2,5) \sim (2,5,29), \\ \pause
\mu_1(2,5,29) &= (433,5,29) \sim (5,29,433), \\
& \ \vdots
\end{align*}
\end{frame}
\begin{frame}{Markov Tree}
\begin{figure}
\centering
\includegraphics[width = 10 cm]{figures/MarkovNumberTree.tex}
\end{figure}
\end{frame}
\section{Continued fractions}
\begin{frame}{Continued Fractions}
A continued fraction is a way to represent a real number; as follows, \pausa
\begin{equation*}
[a_1,a_2,\dots,a_n] = a_1 + \dfrac{1}{a_2+\dfrac{1}{\ddots + \dfrac{1}{a_n}}}.
\end{equation*}
\pause
\begin{exampleblock}{Example}
Consider the real numbers $22/7,\sqrt{2}$;\pause then, $22/7 = 3+1/7 = [3;7]$, and
\pause
\begin{align*}
\sqrt{2} &= 1 + \dfrac{1}{2+ \dfrac{1}{2 + \ddots}} = [1;2,2,2,\dots].
\end{align*}
\end{exampleblock}
\end{frame}
\begin{frame}{Continued Fractions}
A continued fraction $[a_1,\dots,a_n]$ is called \emph{palindromic of even length} if $(a_1,\dots,a_n) = (a_n,\dots,a_1)$, as sequences and $n$ is even.
\end{frame}
\section{Snake graphs}
\begin{frame}{Snake graphs}
A snake graph is a graph that consists of \emph{tiles}; where a tile is \pause
\begin{figure}[H]
\centering
\includegraphics[width = 2.5 cm]{Images/prestile.png}
\caption{A tile $G$ with sides labeled to denote the orientation}
\pause Any tile can be attached on either the north or east edge of the previous tile.
\end{figure}
\end{frame}
\begin{frame}{Snake graphs}
Furthermore, on a snake graph, we assign a \emph{sign function}
\begin{equation*}
f: \{\text{edges of} \ \mathcal{S}\} \to \{\bplus,\rmin \}.
\end{equation*}
such that for each tile $G_i$ the following hold; \pause
\begin{itemize}
\item The north and west edge have the same sign, \pause
\item The south and east edge have the same sign, \pause
\item The sign on the south edge is different than the sign on the north edge.
\end{itemize}
\end{frame}
\begin{frame}{Snake graphs}
\begin{exampleblock}{Example}
\centering
\begin{tikzpicture}
\directlua{tikzsnake("eneennene",4)}
\end{tikzpicture}
\end{exampleblock}
\end{frame}
\begin{frame}{Snake graph of a continued fraction}
For a continued fraction $[a_1,\dots,a_n]$, we denote by $\mathcal{S}[a_1,\dots,a_n]$ its corresponding snake graph.
\pause Consider $[a_1,\dots,a_n]$, and the sign sequence
\begin{equation}\label{signsequence}
\begin{array}{cccccccc}
%(f(e_0),f(e_1),\ldots,f(e_d)) &=&
( \underbrace{ \rmin,\ldots,\rmin},& \underbrace{ \bplus ,\dots, \bplus},& \underbrace{ \rmin,\ldots,\rmin},& \ldots,& \underbrace{\epsilon,\ldots,\epsilon}) , \\
a_1 & a_2 & a_3&\ldots&a_n
\end{array}
\end{equation}
where $\epsilon = $
$
\begin{cases}
\bplus \ \text{if} \ n \ \text{is even}; \\
\rmin \ \text{if} \ n \ \text{is odd}
\end{cases}.
$
\end{frame}
\begin{frame}{Snake graph of a continued fraction}
\centering
Then the snake graph $\s[a_1,\dots,a_n]$ is the graph with precisely $a_1 + \dots + a_n - 1$ tiles determined by its sign sequence.
\end{frame}
\begin{frame}{Snake graph of a continued fraction}
\begin{exampleblock}{Example}
Consider the fraction $31/7$, with its corresponding continued fraction \pause $[4,2,3]$. We get the sign sequence \pause
$
\begin{array}{ccc}
( \rmin,\rmin,\rmin,\rmin,& \bplus,\bplus,& \rmin,\rmin,\rmin);
\end{array}
$
which yields the following snake graph;
\pause
\begin{figure}[H]
\centering
\begin{tikzpicture}
\directlua{tikzsnake("eneenne",4)}
\end{tikzpicture}
\end{figure}
\end{exampleblock}
\end{frame}
\begin{frame}{Snake graph of a continued fraction}
\begin{theorem}
If $m(\s)$ denotes the number of perfect matchings of $\s$, then \pause
\begin{equation*}
[a_1,a_2,\dots,a_n] = \dfrac{m(\s[a_1,a_2,\dots,a_n])}{m(\s[a_2,a_3,\dots,a_n])}
\end{equation*}
\end{theorem}
\end{frame}
\begin{frame}{Snake graph of a continued fraction}
\begin{exampleblock}{Example}
If we take $[4,2,3]$, we have \pause
\begin{align*}
[4,2,3] &= \dfrac{m\left(\vcenter{\hbox{\begin{tikzpicture}[scale=0.3, transform shape]
\directlua{tikzsnake("eneenne",5)}
\end{tikzpicture}}}
\right)}{m\left(
\vcenter{\hbox{\begin{tikzpicture}[scale=0.3, transform shape]
\directlua{tikzsnake("een",5)}
\end{tikzpicture}}}
\right)}\\
&= \dfrac{31}{7}
\end{align*}
\end{exampleblock}
\end{frame}
\section{Palindromification}
\begin{frame}{Palindromification}
Given a continued fraction $[a_1,\dots,a_n]$, we define the continued fraction $[a_n,\dots,a_1,a_1,\dots,a_n]$ to be its \emph{palindromification}. It has the following properties; \pause
\begin{itemize}
\item The snake graph $\s[a_n,\dots,a_1,a_1,\dots,a_n]$ has a rotational symmetry at its center tile; \pause e.g. \begin{tikzpicture}[scale=0.3, transform shape]
\directlua{tikzsnake("enne",5)}.
\end{tikzpicture} \pause
\item If $[a_1,\dots,a_n] = p_n/q_n$, then \pause
\begin{equation*}
[a_n,\dots,a_1,a_1,\dots,a_n] = \dfrac{p_n^2 + q_n^2}{p_np_{n-1} + q_nq_{n-1}};
\end{equation*} \pause
e.g. for $[3,1,5] = 23/6$, we have that $[3,1] = 4$; and $[5,1,3,3,1,5] = \dfrac{565}{98} = \dfrac{23^2 + 6^2}{4\cdot23 + 1 \cdot 6}$.
\end{itemize}
\end{frame}
\section{Markov numbers \& reformulation of the conjecture}
\begin{frame}{Markov numbers}
By using what we described so far, we can prove the following results; \pause
\begin{itemize}
\item Every Markov number is the numerator of a palindromic continued fraction of even length that consists only of $1$'s and $2$'s. \pause
\item Every Markov number (except 1 and 2) is the sum of two relatively prime squares.
\end{itemize}
\end{frame}
\begin{frame}{Reformulations of the conjecture}
Via the above, we can show that the following conjecture implies Frobenius'; \pause
\begin{block}{Conjecture}
Let $m > 2$ be a Markov number. Then there exist \textbf{unique} positive integers $a < b$ with gcd$(a,b) = 1$, such that $m = a^2 + b^2$, $2a \leq b < 3a$; and the continued fraction corresponding to $b/a$ consists entirely of 1's and 2's.
\end{block}
\end{frame}
\begin{frame}{The End}
Thank you for listening!
\end{frame}
\end{document}