-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChapterClusterAlgebraIntro.tex
198 lines (197 loc) · 11 KB
/
ChapterClusterAlgebraIntro.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
\chapter{Introduction to Cluster algebras}
The definition of a Cluster algebra is not particularly difficult; however, it is involved. We begin by describing the space we are examining. Let $(\mathcal{G}, \cdot)$ be any free abelian (multiplicative) group, with basis $\mathbf{y} = \{y_1,\dots,y_n\}$. Next, define an operation $\oplus$ by;
\begin{equation}
\prod_j y_j^{a_j} \oplus \prod_j y_j^{b_j} = \prod_j y_j^{(\text{min}(a_j,b_j))};
\end{equation}
e.g. $y_1^3y_2^{-4}y_3y_4^5 \oplus y_1^{-1} = y_1^{-1}y_2^{-4}$. The reader may like to verify that $\oplus$ is indeed well-defined. Finally, we obtain that $(\mathcal{G},\oplus, \cdot)$ is semifield, i.e. $\oplus$ is commutative, associative and distributive with respect to multiplication in $\mathcal{G}$; more precisely, due to the nature of the operation $\oplus$, $(\mathcal{G},\oplus, \cdot)$ is also known as a \emph{tropical semifield}. Finally, consider the group ring $\mathbb{Z}\mathcal{G}$ of $\mathcal{G}$ and note that $\mathbb{Z}\mathcal{G}$ is exactly the ring of \emph{Laurent polynomials} in the variables $y_1,\dots, y_n$; this will be the used as the ground ring for the corresponding Cluster algebra.
\section{Quivers, initial seeds and mutations}
A \emph{quiver} $\mathcal{Q}$ is a directed graph; i.e. a $4$-tuple $(\mathcal{Q}_0, \mathcal{Q}_1, h, t)$, where $\mathcal{Q}_0$ and $\mathcal{Q}_1$ are the collections of vertices and arrows, respectively. Similarly, $h,t: \mathcal{Q}_1 \to \mathcal{Q}_0$, are set functions that map the head and tail of each arrow in $\mathcal{Q}_1$ in the appropriate direction. Moreover, if $\mathcal{Q}$ does not have any 2-cycles, i.e. $\circ \rightleftarrows \circ$, and does not have any loop, which is simply an arrow from a vertex to itself, then $\mathcal{Q}$ is called a \emph{Cluster quiver}. These will be our main focus throughout the paper.
\begin{figure}[!htb]
\centering
\minipage[c]{0.32\textwidth}
\footnotesize
\[\begin{tikzcd}
&& 1 \\
\\
2 &&&& 3 \\
\\
&& 4
\arrow[from=5-3, to=1-3]
\arrow[shift left=2, from=3-1, to=5-3]
\arrow[shift left=2, from=5-3, to=3-5]
\arrow[from=1-3, to=3-5]
\arrow[from=1-3, to=3-1]
\arrow[shift right=1, from=5-3, to=3-5]
\arrow[from=3-1, to=5-3]
\arrow[shift right=2, from=3-1, to=5-3]
\end{tikzcd}\]
\endminipage\hfill
\minipage[c]{0.32\textwidth}
\footnotesize
\[\begin{tikzcd}
&& 1 \\
\\
2 &&&& 3
\arrow[from=1-3, to=3-5]
\arrow[shift right=1, from=1-3, to=3-1]
\arrow[shift right=1, from=3-1, to=1-3]
\arrow[from=3-1, to=3-5]
\arrow[shift right=2, from=3-1, to=3-5]
\arrow[loop right, to = 5-3]
\end{tikzcd}\]
\endminipage\hfill
\minipage[c]{0.32\textwidth}%
\footnotesize
\[\begin{tikzcd}
1 && 2 && 3 \\
&& 4
\arrow[from=1-1, to=1-3]
\arrow[from=1-5, to=1-3]
\arrow[from=2-3, to=1-3]
\arrow[curve={height=-30pt}, from=1-1, to=1-5]
\end{tikzcd}\]
\endminipage
\caption{Examples of \emph{Cluster quivers} (left and rightmost); and example of quiver that is not of the Cluster type (center); notice that it has a 2-cycle, namely $1 \rightleftarrows 2$, and has a loop. }
\end{figure}
\\
A \emph{seed} $(\mathbf{x},\mathbf{y},\mathcal{Q})$ is what determines the corresponding Cluster algebra, denoted $\mathcal{A} = \mathcal{A}(\mathbf{x},\mathbf{y},\mathcal{Q})$, (through a few rules); where
\begin{itemize}
\item $\mathbf{x}=(x_1,\dots,x_n)$ is the $n$-tuple of variables, called the \emph{initial Cluster}; e.g. in the setting of triangulated polygons, these are precisely the diagonals of the triangulation.
\item $\mathbf{y}=(y_1,\dots,y_n)$ is the $n$-tuple of generators, called the \emph{initial coefficients}; e.g. in the setting of Conway-Coxeter frieze patterns, all these variables are equal to 1; or rather, the (free abelian) group corresponding to Conway-Coxeter frieze patterns is precisely $\mathbb{Z}$, with the usual multiplication, which has basis $1$.
\item $\mathcal{Q}$ a Cluster quiver;
\end{itemize}
The process of generating a Cluster algebra from an initial seed is by iterating what is called a \emph{Cluster mutation}, or simply \emph{mutation}. A mutation $\mu_k$ acts on the initial seed as follows;
\begin{itemize}
\item $\Tilde{\mathbf{x}} :=\mu_k\mathbf{x} = \{\mathbf{x} / x_k\} \cup \{x_k^{'}\}$; where,
\begin{equation}
x_k^{'} = \dfrac{1}{y_k \oplus 1}\dfrac{y_k\prod_{i \to k}x_i + \prod_{k \to j}x_j}{x_k};
\end{equation}
where the first product is over all arrows going into vertex $k$, in the corresponding quiver; and similarly, the second product is over all arrows going out from vertex $k$.
\item $\Tilde{\mathbf{y}} := \mu_k\mathbf{y} = (y_1^{'},\dots,y_n^{'})$; where,
\begin{equation*}
y_j =
\begin{cases}
y_j \prod_{k \to i}y_k(y_k \oplus 1)^{-1} \prod_{j \to k}(y_k \oplus 1), \ &\text{if} \ j \ne k \\
y_k^{-1}, &\text{if} \ j = k;
\end{cases}
\end{equation*}
\item Lastly, $\mu_k$ acts on the quiver $\mathcal{Q}$ in the following way;
\begin{itemize}
\item[i.] For any path $i \to k \to j$, add an arrow $i \to j$,
\item[ii.] Invert all arrows going into and coming out from vertex $k$,
\item[iii.] Remove any $2$-cycles;
\end{itemize}
through this, we obtain a new quiver $\mathcal{Q}^{'}$.
\end{itemize}
Hence, we finally obtain that the new seed after mutation $\mu_k$ is precisely $(\Tilde{\mathbf{x}},\Tilde{\mathbf{y}}, \mathcal{Q}^{'})$. The Cluster algebra is then the $\mathbb{F}\mathcal{G}$-subalgebra of $\mathcal{F}:= \mathbb{Q}\mathcal{G}(x_1,\dots,x_n)$; i.e. it is a subalgebra of the field of rational functions in $n$ variables and coefficients in $\mathbb{Z}\mathcal{G}$; generated by, what are called, \emph{Cluster variables}, which are obtained from the initial seed by a recursively applying mutations; the reader may quickly notice that given any seed there are $n$ different mutations $\mu_1, . . . , \mu_n$, one for each vertex of the quiver, which corresponds to the number of Cluster variables. We denote by $\mathcal{X}$, the set of all possible Cluster variables after any arbitrarily long sequence of mutations.\footnote[1]{Notice that mutations are involutions; i.e. $\mu_k\circ\mu_k =\textit{Id}$.}
\begin{figure}[!htb]
\centering
\minipage[c]{0.45\textwidth}
\footnotesize
\[\begin{tikzcd}
1 &&&& 2 \\
& 3 \\
&&&& 4 \\
&&& 5
\arrow[from=2-2, to=4-4]
\arrow[from=2-2, to=1-5]
\arrow[curve={height=-46pt}, from=1-5, to=4-4]
\arrow[curve={height=12pt}, from=1-1, to=4-4]
\arrow[shift right=1, from=1-5, to=3-5]
\arrow[shift left=1, from=1-5, to=3-5]
\arrow[from=1-1, to=2-2]
\arrow[curve={height=-12pt}, from=1-1, to=1-5]
\arrow[shift left=1, curve={height=-6pt}, from=4-4, to=1-5]
\arrow[shift right=2, curve={height=12pt}, from=1-1, to=4-4]
\end{tikzcd}\]
\endminipage\hfill
\minipage[c]{0.1\textwidth}
\Large
$\xleftrightarrow{\mu_3}$
\endminipage\hfill
\minipage[c]{0.45\textwidth}%
\footnotesize
\[\begin{tikzcd}
1 &&&& 2 \\
& 3 \\
&&&& 4 \\
&&& 5
\arrow[curve={height=12pt}, from=1-1, to=4-4]
\arrow[curve={height=-12pt}, from=1-1, to=1-5]
\arrow[from=2-2, to=1-1]
\arrow[from=1-5, to=2-2]
\arrow[from=4-4, to=2-2]
\arrow[curve={height=-6pt}, from=4-4, to=1-5]
\arrow[shift left=1, from=1-5, to=3-5]
\arrow[shift right=1, from=1-5, to=3-5]
\arrow[curve={height=-46pt}, from=1-5, to=4-4]
\arrow[shift right=2, curve={height=12pt}, from=1-1, to=4-4]
\arrow[shift right=4, curve={height=12pt}, from=1-1, to=4-4]
\arrow[shift left=2, curve={height=-12pt}, from=1-1, to=1-5]
\end{tikzcd}\]
\endminipage
\caption{Example of a quiver mutation $\mu_3$.}
\end{figure}
\begin{example}
Let the initial seed be
\begin{equation*}
(\mathbf{x},\mathbf{y},\mathcal{Q}) = ((x_1,x_2,x_3),(1,1,1),\begin{tikzcd}
1 & 2 & 3
\arrow[from=1-1, to=1-2]
\arrow[from=1-3, to=1-2]
\arrow[curve={height=-12pt}, from=1-1, to=1-3].
\end{tikzcd})
\end{equation*}
Note that any mutation on $\mathbf{y}$ leaves it unchanged as we set it to be a vector of $1$'s; hence we will leave it out. Next, consider $\mu_1$, and we then obtain $x_1^{'} = (1+x_2x_3)/x_1$, and the resulting seed is now;
\begin{equation*}
\left(\dfrac{1+x_2x_3}{x_1},x_2,x_3\right), \begin{tikzcd}
1 & 2 & 3
\arrow[from=1-2, to=1-1]
\arrow[from=1-3, to=1-2]
\arrow[curve={height=12pt}, from=1-3, to=1-1]
\end{tikzcd}.
\end{equation*}
We then apply mutation $\mu_2$, which yields;
\begin{equation*}
\left(\dfrac{1 + x_2x_3}{x_1},\dfrac{x_1x_3+x_3x_2}{x_1x_2},x_3\right), \begin{tikzcd}
1 & 2 & 3
\arrow[from=1-1, to=1-2]
\arrow[from=1-2, to=1-3]
\arrow[curve={height=12pt}, from=1-3, to=1-1]
\arrow[shift right=1, curve={height=12pt}, from=1-3, to=1-1]
\end{tikzcd}.
\end{equation*}
Apply mutation $\mu_3$;
\begin{equation*}
\left(\dfrac{1 + x_2x_3}{x_1},\dfrac{1 + x_1x_3+x_3x_2}{x_1x_2},\dfrac{x_1 + x_2 + (x_1^2 + x_1x_2 + 2x_2^2)x_3 + x_2^3x_3^2}{x_1^2x_2x_3}\right),\begin{tikzcd}
1 & 2 & 3
\arrow[from=1-1, to=1-2]
\arrow[from=1-3, to=1-2]
\arrow[curve={height=-12pt}, from=1-1, to=1-3]
\arrow[shift left=1, curve={height=-12pt}, from=1-1, to=1-3]
\end{tikzcd}.
\end{equation*}
Finally, we apply mutation $\mu_2$ once more;
\begin{equation*}
\left(\dfrac{1 + x_2x_3}{x_1},\dfrac{x_1 + x_2 + x_2^2x_3}{x_1x_3},\dfrac{x_1 + x_2 + (x_1^2 + x_1x_2 + 2x_2^2)x_3 + x_2^3x_3^2}{x_1^2x_2x_3}\right),\begin{tikzcd}
1 & 2 & 3
\arrow[from=1-2, to=1-1]
\arrow[from=1-3, to=1-2]
\arrow[curve={height=-12pt}, from=1-1, to=1-3]
\arrow[shift left=1, curve={height=-12pt}, from=1-1, to=1-3]
\end{tikzcd}.
\end{equation*}
In general, this process of mutating will always yield a new unseen Cluster variable; i.e., in general, there are infinitely many Cluster variable that arise from Cluster mutations of an arbitrary seed. One may verify that for an initial seed $((x_1,x_2),(1,1),1 \to 2)$, we obtain finitely many Cluster variables; more precisely, there are exactly 5.
\end{example}
In the above example, we can observe that after every mutation, the Cluster variable obtained is, what is called, a \emph{Laurent polynomial}. This is no coincidence; and the following theorem does, in fact, generalize it;
\begin{theorem}
Let $c$ in $\mathcal{X}$ be any Cluster variable. Then,
\begin{equation*}
c = \dfrac{f(x_1,\dots,x_n)}{x_1^{\tau_1}\cdots x_n^{\tau_n}};
\end{equation*}
with $f \in \mathbb{Z}\mathcal{G}[x_1,\dots,x_n]$.
\end{theorem}
This result is particularly surprising as \emph{a priori} any Cluster variable is simply a rational polynomial in the variables $x_1,\dots,x_n$; while in other settings, when dividing two seemingly unrelated multinomials, we in general are not able to simplify it so that we have a monomial in the denominator.
\begin{remark}
The above result can be strengthened further by changing $\mathbb{Z}\mathcal{G}[x_1,\dots,x_n]$ to $\mathbb{Z}_{\geq 0}\mathcal{G}[x_1,\dots,x_n]$, also known as the \emph{positivity conjecture}; in other words, all coefficients of $f$, above, are positive. In \cite{LS}, the authors finally prove the conjecture for all \emph{skew-symmetric} cluster algebras; and the more general case of \emph{skew-symmetrizable} cluster algebras has been proven in \cite{GHKK}.
\end{remark}