-
Notifications
You must be signed in to change notification settings - Fork 52
/
hatt_classifier.py
390 lines (283 loc) · 8.89 KB
/
hatt_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import json
import re
import sys
from collections import Counter, OrderedDict
import numpy as np
import pandas as pd
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils.np_utils import to_categorical
from keras.layers.wrappers import Bidirectional
from keras.layers import Dense, Input, LSTM, Embedding, Dropout, Activation, Convolution1D, MaxPooling1D, Flatten, concatenate, GlobalMaxPooling1D
from keras.layers import GlobalMaxPooling1D, GlobalAveragePooling1D, SpatialDropout1D ,TimeDistributed
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.callbacks import EarlyStopping, ModelCheckpoint, Callback
from keras.constraints import maxnorm
from keras.models import model_from_json
from keras.optimizers import Adam
from keras import regularizers
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.metrics import f1_score
from attention import AttentionWithContext
from data_gen import hierarchicalCorpus as Corpus
# Modify this paths as well
DATA_DIR = '/home/alex/Documents/git_projects/Document-Classifier-LSTM/data/'
TRAIN_FILE = 'train_set.csv'
TRAIN_LABS = 'train_set_labels.csv'
EMBEDDING_FILE = '/home/alex/Documents/Python/glove.6B/glove.6B.200d.txt'
# The maximum number of words to be used. (most frequent)
MAX_NB_WORDS = 80000
# Max number of words in each abstract.
MAX_SEQUENCE_LENGTH = 100 # MAYBE BIGGER
MAX_SENT_LEN = 25
MAX_SEQ_LEN = 5
# This is fixed.
EMBEDDING_DIM = 200
# The name of the model.
STAMP = 'doc_hatt_blstm'
def f1_score(y_true, y_pred):
"""
Compute the micro f(b) score with b=1.
"""
y_true = tf.cast(y_true, "float32")
y_pred = tf.cast(tf.round(y_pred), "float32") # implicit 0.5 threshold via tf.round
y_correct = y_true * y_pred
sum_true = tf.reduce_sum(y_true, axis=1)
sum_pred = tf.reduce_sum(y_pred, axis=1)
sum_correct = tf.reduce_sum(y_correct, axis=1)
precision = sum_correct / sum_pred
recall = sum_correct / sum_true
f_score = 2 * precision * recall / (precision + recall)
f_score = tf.where(tf.is_nan(f_score), tf.zeros_like(f_score), f_score)
return tf.reduce_mean(f_score)
def load_data(train_set,
multilabel=True):
"""
"""
X_data = []
y_data = []
for c,(vector,target) in enumerate(train_set):
X_data.append(vector)
y_data.append(target)
if c % 10000 == 0:
print(c)
num_texts = len(X_data)
print(num_texts, 'training examples')
tokenizer = Tokenizer(num_words=MAX_NB_WORDS,
oov_token=1)
X_data_flat = []
for raw_txt in X_data:
flat_txt = ''
for sent in raw_txt:
flat_txt += sent
X_data_flat.append(flat_txt)
tokenizer.fit_on_texts(X_data_flat)
X_data_int = np.zeros((num_texts,MAX_SEQ_LEN,MAX_SENT_LEN))
for idx,raw_txt in enumerate(X_data):
sentences_batch = np.zeros((MAX_SEQ_LEN,MAX_SENT_LEN))
tokens = tokenizer.texts_to_sequences(raw_txt)
sentences = pad_sequences(tokens,
maxlen=MAX_SENT_LEN,
padding='post',
truncating='post',
dtype='int32')
for j,sent in enumerate(sentences):
if j >= MAX_SEQ_LEN:
break
sentences_batch[j,:] = sent
X_data_int[idx,:,:] = sentences_batch
X_data = X_data_int
print(('Shape of data tensor:', X_data.shape))
word_index = tokenizer.word_index
print(('Found %s unique tokens' % len(word_index)))
with open('word_index.json', 'w') as fp:
json.dump(word_index, fp)
print('Exported word dictionary')
class_freqs = Counter([y for y_seq in y_data for y in y_seq]).most_common()
class_list = [y[0] for y in class_freqs]
nb_classes = len(class_list)
print(nb_classes,'classes')
class_dict = dict(zip(class_list, np.arange(len(class_list))))
with open('class_dict.json', 'w') as fp:
json.dump(class_dict, fp)
print('Exported class dictionary')
y_data_int = []
for y_seq in y_data:
y_data_int.append([class_dict[y] for y in y_seq])
if multilabel:
mlb = MultiLabelBinarizer()
mlb.fit([list(class_dict.values())])
y_data = mlb.transform(y_data_int)
else:
y_data = to_categorical(y_data_int)
y_h_data = to_categorical(y_h_data_int)
print(('Shape of label tensor:', y_data.shape))
X_train, X_val, y_train, y_val = train_test_split(X_data, y_data,
train_size=0.8,
test_size=0.2,
random_state=42)
return X_train, X_val, y_train, y_val, nb_classes, word_index
def prepare_embeddings(wrd2id):
"""
"""
vocab_size = MAX_NB_WORDS
print("Found %s words in the vocabulary." % vocab_size)
embedding_idx = {}
glove_f = open(EMBEDDING_FILE)
for line in glove_f:
values = line.split()
wrd = values[0]
coefs = np.asarray(values[1:],
dtype='float32')
embedding_idx[wrd] = coefs
glove_f.close()
print("Found %s word vectors." % len(embedding_idx))
embedding_mat = np.random.rand(vocab_size+1,EMBEDDING_DIM)
wrds_with_embeddings = 0
# Keep the MAX_NB_WORDS most frequent tokens.
for wrd, i in wrd2id.items():
if i > vocab_size:
continue
embedding_vec = embedding_idx.get(wrd)
# words without embeddings will be left with random values.
if embedding_vec is not None:
wrds_with_embeddings += 1
embedding_mat[i] = embedding_vec
print(embedding_mat.shape)
print('Words with embeddings:',wrds_with_embeddings)
return embedding_mat, vocab_size
def build_model(nb_classes,
word_index,
embedding_dim,
seq_length,
stamp,
multilabel=True):
"""
"""
embedding_matrix, nb_words = prepare_embeddings(word_index)
input_layer = Input(shape=(MAX_SEQ_LEN,MAX_SENT_LEN),
dtype='int32')
sentence_input = Input(shape=(MAX_SENT_LEN,),
dtype='int32')
embedding_layer = Embedding(input_dim=nb_words+1,
output_dim=embedding_dim,
input_length=MAX_SENT_LEN,
weights=[embedding_matrix],
embeddings_regularizer=regularizers.l2(0.00),
trainable=True)(sentence_input)
drop1 = SpatialDropout1D(0.3)(embedding_layer)
sent_lstm = Bidirectional(LSTM(100, name='blstm_1',
activation='tanh',
recurrent_activation='hard_sigmoid',
recurrent_dropout=0.0,
dropout=0.4,
kernel_initializer='glorot_uniform',
return_sequences=True),
merge_mode='concat')(drop1)
sent_att_layer = AttentionWithContext()(sent_lstm)
sentEncoder = Model(sentence_input, sent_att_layer)
sentEncoder.summary()
textEncoder = TimeDistributed(sentEncoder)(input_layer)
drop2 = Dropout(0.4)(textEncoder)
lstm_1 = Bidirectional(LSTM(100, name='blstm_2',
activation='tanh',
recurrent_activation='hard_sigmoid',
recurrent_dropout=0.0,
dropout=0.4,
kernel_initializer='glorot_uniform',
return_sequences=True),
merge_mode='concat')(drop2)
lstm_1 = BatchNormalization()(lstm_1)
att_layer = AttentionWithContext()(lstm_1)
drop3 = Dropout(0.5)(att_layer)
if multilabel:
predictions = Dense(nb_classes, activation='sigmoid')(drop3)
model = Model(inputs=input_layer, outputs=predictions)
adam = Adam(lr=0.001,
decay=0.0)
model.compile(loss='binary_crossentropy',
optimizer=adam,
metrics=[f1_score])
else:
predictions = Dense(nb_classes, activation='softmax')(drop3)
model = Model(inputs=input_layer, outputs=predictions)
adam = Adam(lr=0.001,
decay=0.0)
model.compile(loss='categorical_crossentropy',
optimizer=adam,
metrics=['accuracy'])
model.summary()
print(stamp)
# Save the model.
model_json = model.to_json()
with open(stamp + ".json", "w") as json_file:
json_file.write(model_json)
return model
def load_model(stamp,
multilabel=True):
"""
"""
json_file = open(stamp+'.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
model.load_weights(stamp+'.h5')
print("Loaded model from disk")
model.summary()
adam = Adam(lr=0.001)
if multilabel:
model.compile(loss='binary_crossentropy',
optimizer=adam,
metrics=[f1_score])
else:
model.compile(loss='categorical_crossentropy',
optimizer=adam,
metrics=['accuracy'])
return model
if __name__ == '__main__':
multilabel,load_previous = sys.argv[1:]
print(multilabel,load_previous)
if multilabel == 'multi':
multilabel = True
else:
multilabel = False
if load_previous == 'load':
load_previous = True
else:
load_previous = False
train_set = Corpus(DATA_DIR+TRAIN_FILE,DATA_DIR+TRAIN_LABS)
X_train, X_val, y_train, y_val, nb_classes, word_index = load_data(train_set,
multilabel)
if load_previous:
model = load_model(STAMP,
multilabel)
else:
model = build_model(nb_classes,
word_index,
EMBEDDING_DIM,
MAX_SEQUENCE_LENGTH,
STAMP,
multilabel)
if multilabel:
monitor_metric = 'val_f1_score'
else:
monitor_metric = 'val_loss'
early_stopping =EarlyStopping(monitor=monitor_metric,
patience=5)
bst_model_path = STAMP + '.h5'
model_checkpoint = ModelCheckpoint(bst_model_path,
monitor=monitor_metric,
verbose=1,
save_best_only=True,
mode='max',
save_weights_only=True)
hist = model.fit(X_train, y_train,
validation_data=(X_val, y_val),
epochs=100,
batch_size=128,
shuffle=True,
callbacks=[model_checkpoint])
print(hist.history)