-
Notifications
You must be signed in to change notification settings - Fork 2
/
proportionalResize2.py
200 lines (171 loc) · 8.21 KB
/
proportionalResize2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 30 20:43:43 2018
@author: USER
"""
import os
import cv2
import imutils
import time
import csv
import numpy as np
import fiturWarna as fw
import fiturTekstur as ft
import segmentasiWarna1 as sg
start_time = time.time()
def resizeImg(image):
# Set image to landscape position
if (len(image) > len(image[0])):
image = imutils.rotate_bound(image, -90)
# Find ratio of image
ratio = 500.0/len(image)
# Resize image based on ratio
small = cv2.resize(image, (0,0),fx=ratio,fy=ratio)
return small
def rename():
#print inspect.getfile(inspect.currentframe())
path = "D:\\KULIAH\\SEMESTER VII\\SKRIPSI - OFFLINE\\TEST\\"
tot = os.listdir(path)
i = 1
kelas = 1
for filename in tot:
if (kelas != int(filename[:3])):
i = 1
kelas = int(filename[:3])
#if filename.endswith(".jpg"):
#print(str(tot)+str(filename))
print(str(i).zfill(3)+".jpg")
os.rename(path+filename, path+filename[:3]+"_"+str(i).zfill(4)+".jpg")
i += 1
path = "D:\\KULIAH\\SEMESTER VII\\SKRIPSI - OFFLINE\\DATASET BALANCE2\\"
pathOutput = "D:\\KULIAH\\SEMESTER VII\\SKRIPSI - OFFLINE\\DATA02\\"
tot = os.listdir(path)
X = 1
#kelas = 1
with open('data/realTraining/data02.csv', 'a') as myfile:
wr = csv.writer(myfile, delimiter=',')
for filename in tot:
if (int(filename[:3]) >= 11 and int(filename[:3]) <= 20):
#if (X == 1):
print(filename)
## RESIZE ##
#strFile = 'D:\\KULIAH\\SEMESTER VII\\SKRIPSI - OFFLINE\\DATASET BALANCE2\\001_0002.jpg'
rgbImg = cv2.imread(path+filename)
#print("baca file")
#print(time.time()-start_time)
rgbImg = resizeImg(rgbImg)
## SEGMENTATION ##
rgbImg = sg.segmentation(rgbImg)
#print("rotate")
#print(time.time()-start_time)
#rotated = imutils.rotate_bound(rgbImg, 90)
#cv2.imshow('Asli'+str(i),rgbImg)
#cv2.imwrite(pathOutput+filename,rgbImg)
## FEATURE TEXTURE EXTRACTION
#coMatrix0, coMatrix45, coMatrix90, coMatrix135 = ft.getCoMatrix(rgbImg)
#cv2.imshow("sasa",rgbImg)
coMatrix = ft.getCoMatrix(rgbImg)
#print("coMatrix")
#print(time.time()-start_time)
'''
sumCoMatrix0 = ft.sumCM(coMatrix0)
sumCoMatrix45 = ft.sumCM(coMatrix45)
sumCoMatrix90 = ft.sumCM(coMatrix90)
sumCoMatrix135 = ft.sumCM(coMatrix135)
meanX0, meanY0, varX0, varY0, energy0, entropy0, contrast0, dissimilarity0, homogeneity0, correlation0 = ft.getFeature(coMatrix0, sumCoMatrix0)
meanX45, meanY45, varX45, varY45, energy45, entropy45, contrast45, dissimilarity45, homogeneity45, correlation45 = ft.getFeature(coMatrix45, sumCoMatrix45)
meanX90, meanY90, varX90, varY90, energy90, entropy90, contrast90, dissimilarity90, homogeneity90, correlation90 = ft.getFeature(coMatrix90, sumCoMatrix90)
meanX135, meanY135, varX135, varY135, energy135, entropy135, contrast135, dissimilarity135, homogeneity135, correlation135 = ft.getFeature(coMatrix135, sumCoMatrix135)
'''
meanX0, meanY0, varX0, varY0, energy0, entropy0, contrast0, dissimilarity0, homogeneity0, correlation0 = ft.getFeature(coMatrix[0])
meanX45, meanY45, varX45, varY45, energy45, entropy45, contrast45, dissimilarity45, homogeneity45, correlation45 = ft.getFeature(coMatrix[1])
meanX90, meanY90, varX90, varY90, energy90, entropy90, contrast90, dissimilarity90, homogeneity90, correlation90 = ft.getFeature(coMatrix[2])
meanX135, meanY135, varX135, varY135, energy135, entropy135, contrast135, dissimilarity135, homogeneity135, correlation135 = ft.getFeature(coMatrix[3])
#print("hitungfitur")
#print(time.time()-start_time)
fiturTekstur = []
fiturTekstur.append(meanX0)
fiturTekstur.append(meanY0)
fiturTekstur.append(varX0)
fiturTekstur.append(varY0)
fiturTekstur.append(energy0)
fiturTekstur.append(entropy0)
fiturTekstur.append(contrast0)
fiturTekstur.append(dissimilarity0)
fiturTekstur.append(homogeneity0)
fiturTekstur.append(correlation0)
fiturTekstur.append(meanX45)
fiturTekstur.append(meanY45)
fiturTekstur.append(varX45)
fiturTekstur.append(varY45)
fiturTekstur.append(energy45)
fiturTekstur.append(entropy45)
fiturTekstur.append(contrast45)
fiturTekstur.append(dissimilarity45)
fiturTekstur.append(homogeneity45)
fiturTekstur.append(correlation45)
fiturTekstur.append(meanX90)
fiturTekstur.append(meanY90)
fiturTekstur.append(varX90)
fiturTekstur.append(varY90)
fiturTekstur.append(energy90)
fiturTekstur.append(entropy90)
fiturTekstur.append(contrast90)
fiturTekstur.append(dissimilarity90)
fiturTekstur.append(homogeneity90)
fiturTekstur.append(correlation90)
fiturTekstur.append(meanX135)
fiturTekstur.append(meanY135)
fiturTekstur.append(varX135)
fiturTekstur.append(varY135)
fiturTekstur.append(energy135)
fiturTekstur.append(entropy135)
fiturTekstur.append(contrast135)
fiturTekstur.append(dissimilarity135)
fiturTekstur.append(homogeneity135)
fiturTekstur.append(correlation135)
#print("appendfitur")
#print("segmentasi")
#print(time.time()-start_time)
cv2.imwrite(pathOutput+filename,rgbImg)
#cv2.imshow('Asli'+str(X),segmentImg)
#print(time.time()-start_time)
## COLOR FEATURE EXTRACTION ##
labNorm = fw.convBGRtoLAB(rgbImg)
lab = np.zeros_like(rgbImg)
for i in range(len(labNorm)):
for j in range(len(labNorm[i])):
lab[i][j][0] = labNorm[i][j][0] * 255 / 100
lab[i][j][1] = labNorm[i][j][1] + 128
lab[i][j][2] = labNorm[i][j][2] + 128
meanL, varL, skewL, kurtL = fw.getColorMoment(lab[:,:,0])
meanA, varA, skewA, kurtA = fw.getColorMoment(lab[:,:,1])
meanB, varB, skewB, kurtB = fw.getColorMoment(lab[:,:,2])
fiturWarna = []
fiturWarna.append(meanL)
fiturWarna.append(varL)
fiturWarna.append(skewL)
fiturWarna.append(kurtL)
fiturWarna.append(meanA)
fiturWarna.append(varA)
fiturWarna.append(skewA)
fiturWarna.append(kurtA)
fiturWarna.append(meanB)
fiturWarna.append(varB)
fiturWarna.append(skewB)
fiturWarna.append(kurtB)
#print("fitur warna")
#print(time.time()-start_time)
## RECORD FEATURE ##
fitur = []
fitur.append(filename[:8])
for i in fiturTekstur:
fitur.append(i)
for i in fiturWarna:
fitur.append(i)
wr.writerow(fitur)
#print('selesai')
print(time.time()-start_time)
X+=1
#print(X)
cv2.waitKey(0)