-
Notifications
You must be signed in to change notification settings - Fork 5
/
TEMCMCsampler.m
482 lines (413 loc) · 18 KB
/
TEMCMCsampler.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
function [output] = TEMCMCsampler(varargin)
%% Transitional Ensemble Markov Chain Monte Carlo sampler
%
% This program implements a method described in:
% Ching, J. and Chen, Y. (2007). "Transitional Markov Chain Monte Carlo
% Method for Bayesian Model Updating, Model Class Selection, and Model
% Averaging." J. Eng. Mech., 133(7), 816-832. The exception is that the
% resampling procedure is now performced using the Ensemble Sampler with
% Affine Invariance proposed by Goodman and Weare (2010) in place of the
% Metropolis-Hastings MCMC sampler.
% -------------------------------------------------------------------------
% who when observations
%--------------------------------------------------------------------------
% Diego Andres Alvarez Jul-24-2013 First algorithm
%--------------------------------------------------------------------------
% Diego Andres Alvarez - daalvarez@unal.edu.co
% Edoardo Patelli - edoardo.patelli@strath.ac.uk
% Adolphus Lye - adolphus.lye@liverpool.ac.uk
% Parse the information in the name/value pairs:
pnames = {'nsamples','loglikelihood','priorpdf','priorrnd','burnin',...
'lastburnin','stepsize','thinchain'};
% Define default values:
dflts = {[],[],[],[],[],0,2,3}; % define default values
[nsamples,loglikelihood,priorpdf,prior_rnd,burnin,lastBurnin,stepsize,thinchain] = ...
internal.stats.parseArgs(pnames, dflts, varargin{:});
%--------------------------------------------------------------------------
%
% Inputs:
% nsamples: Scalar value of the number of samples to be generated from the Posterior;
% loglikelihood: A function handle of the loglikelihood function;
% priorpdf: Function-handle of the Prior PDF;
% prior_rnd: Function-handle of the Prior random number generator;
% burnin: Number of burn-in for all iterations up to M-1;
% lastBurnin: Number of burn-in for the last iteration;
% stepsize: The stepsize for the Ensemble sampler in the updating step (this is the tuning parameter);
% thinchain: Thin all the chains of the Ensemble sampler by only storing every k'th step (default=3);
%
% Outputs:
% output.samples: A N x dim matrix of Posterior samples;
% output.allsamples: A N x dim x (M+1) array of samples from all iterations;
% output.acceptance: A M x 1 vector of acceptance rates for all iterations;
% output.log_evidence: A scalar value of the logarithmic of the evidence;
% output.beta: A M x 1 vector of beta_j values;
% output.step: A M x 1 vector of step-size;;
%
%--------------------------------------------------------------------------
%% Number of cores
if ~isempty(gcp('nocreate'))
pool = gcp;
Ncores = pool.NumWorkers;
fprintf('TEMCMC is running on %d cores.\n', Ncores);
end
%% Obtain N samples from the prior pdf f(T)
j = 0; % Initialise loop for the transitional likelihood
thetaj = prior_rnd(nsamples); % theta0 = N x D
pj = 0; % p0 = 0 (initial tempering parameter)
Dimensions = size(thetaj, 2); % size of the vector theta
count = 1; % Counter
samps(:,:,count) = thetaj;
beta_j(count) = pj;
%% Initialization of matrices and vectors
thetaj1 = zeros(nsamples, Dimensions);
step(count) = stepsize;
%% Main loop
while pj < 1
j = j+1;
%% Calculate the tempering parameter p(j+1):
for l = 1:nsamples
log_fD_T_thetaj(l) = loglikelihood(thetaj(l,:));
end
if any(isinf(log_fD_T_thetaj))
error('The prior distribution is too far from the true region');
end
pj1 = calculate_pj1(log_fD_T_thetaj, pj);
fprintf('TEMCMC: Iteration j = %2d, pj1 = %f\n', j, pj1);
%% Compute the plausibility weight for each sample wrt f_{j+1}
fprintf('Computing the weights ...\n');
a = (pj1-pj)*log_fD_T_thetaj;
wj = exp(a);
wj_norm = wj./sum(wj); % normalization of the weights
%% Compute S(j) = E[w{j}] (eq 15)
S(j) = mean(wj);
%% Do the resampling step to obtain N samples from f_{j+1}(theta) and
% then perform EMCMC on each of these samples using as a
% stationary PDF "fj1"
log_posterior = @(t) log(priorpdf(t)) + pj1*loglikelihood(t);
%% During the last iteration we require to do a better burnin in order
% to guarantee the quality of the samples:
if pj1 == 1
burnin = lastBurnin;
end
%% Start N different Markov chains
fprintf('Markov chains ...\n\n');
idx = randsample(nsamples, nsamples, true, wj_norm);
start = zeros(nsamples, Dimensions);
for i = 1:nsamples
start(i,:) = thetaj(idx(i), :);
end
% Apply the Ensemble MCMC sampler:
% Ensemble MCMC is an implementation of the Goodman and Weare 2010 Affine
% invariant ensemble Markov Chain Monte Carlo (MCMC) sampler. MCMC sampling
% enables bayesian inference. The problem with many traditional MCMC samplers
% is that they can have slow convergence for badly scaled problems, and that
% it is difficult to optimize the random walk for high-dimensional problems.
% This is where the EMCMC-algorithm really excels as it is affine invariant. It
% can achieve much better convergence on badly scaled problems. It is much
% simpler to get to work straight out of the box, and for that reason it
% truly deserves to be called the MCMC hammer.
% smpl = EMCMCsampler(start, pdf, Nsample per chain);
% start = nsamples x Dimension vector;
% nsamples = number of samples to be generated;
% Here, the EMCMC sampler generates Nchains = nsamples number of Markov
% chains, each generating 1 sample;
% Nsample per chain = 1;
% smpl = Nchains x Dimension x 1 matrix
[samples,logp,acceptance_rate] = EMCMCsampler(start, log_posterior, 1, priorpdf, ...
'StepSize', stepsize,...
'BurnIn', burnin,...
'ThinChain', thinchain);
samples_nominal = permute(samples, [2 1 3]);
% To compress thetaj1 into a nsamples x Dimension vector
thetaj1 = samples_nominal(:,:)';
% According to Cheung and Beck (2009) - Bayesian model updating ...,
% the initial samples from reweighting and the resample of samples of
% fj, in general, do not exactly follow fj1, so that the Markov
% chains must "burn-in" before samples follow fj1, requiring a large
% amount of samples to be generated for each level.
%% Adjust the acceptance rate (optimal = 23%)
% See: http://www.dms.umontreal.ca/~bedard/Beyond_234.pdf
%{
if acceptance_rate < 0.3
% Many rejections means an inefficient chain (wasted computation
%time), decrease the variance
beta = 0.99*beta;
elseif acceptance_rate > 0.5
% High acceptance rate: Proposed jumps are very close to current
% location, increase the variance
beta = 1.01*beta;
end
%}
fprintf('\n');
acceptance(count) = acceptance_rate;
%% Prepare for the next iteration
c_a = (acceptance_rate - ((0.21./Dimensions) + 0.23));
stepsize_nominal = stepsize.*exp(c_a);
if stepsize_nominal <= 1
stepsize = 1.01;
else
stepsize = stepsize_nominal;
end
count = count+1;
samps(:,:,count) = thetaj1;
step(count) = stepsize;
thetaj = thetaj1;
pj = pj1;
beta_j(count) = pj;
end
% estimation of f(D) -- this is the normalization constant in Bayes
log_fD = sum(log(S(1:j)));
%% Description of outputs:
output.samples = thetaj; % To only show samples from the final posterior
output.allsamples = samps; % To show all samples from the initial prior to the final posterior
output.log_evidence = log_fD; % To generate the logarithmic of the evidence
output.acceptance = acceptance; % To show the mean acceptance rates for all iterations
output.beta = beta_j; % To show the values of temepring parameters, beta_j
output.step = step; % To show the values of step-size
return; % End
%% Calculate the tempering parameter p(j+1)
function pj1 = calculate_pj1(log_fD_T_thetaj, pj)
% find pj1 such that COV <= threshold, that is
%
% std(wj)
% --------- <= threshold
% mean(wj)
%
% here
% size(thetaj) = N x D,
% wj = fD_T(thetaj).^(pj1 - pj)
% e = pj1 - pj
threshold = 1; % 100% = threshold on the COV
% wj = @(e) fD_T_thetaj^e; % N x 1
% Note the following trick in order to calculate e:
% Take into account that e>=0
wj = @(e) exp(abs(e)*log_fD_T_thetaj); % N x 1
fmin = @(e) std(wj(e)) - threshold*mean(wj(e)) + realmin;
e = abs(fzero(fmin, 0)); % e is >= 0, and fmin is an even function
if isnan(e)
error('There is an error finding e');
end
pj1 = min(1, pj + e);
return; % End
function [models,logP,acceptance]=EMCMCsampler(minit,logPfuns,Nsamples,box,varargin)
%% Cascaded affine invariant ensemble MCMC sampler. "The MCMC hammer"
%
% GWMCMC is an implementation of the Goodman and Weare 2010 Affine
% invariant ensemble Markov Chain Monte Carlo (MCMC) sampler. MCMC sampling
% enables bayesian inference. The problem with many traditional MCMC samplers
% is that they can have slow convergence for badly scaled problems, and that
% it is difficult to optimize the random walk for high-dimensional problems.
% This is where the GW-algorithm really excels as it is affine invariant. It
% can achieve much better convergence on badly scaled problems. It is much
% simpler to get to work straight out of the box, and for that reason it
% truly deserves to be called the MCMC hammer.
%
% (This code uses a cascaded variant of the Goodman and Weare algorithm).
%
% USAGE:
% [models,logP]=gwmcmc(minit,logPfuns,mccount, Parameter,Value,Parameter,Value);
%
% INPUTS:
% minit: an WxM matrix of initial values for each of the walkers in the
% ensemble. (M:number of model params. W: number of walkers). W
% should be atleast 2xM. (see e.g. mvnrnd).
% logPfuns: a cell of function handles returning the log probality of a
% proposed set of model parameters. Typically this cell will
% contain two function handles: one to the logprior and another
% to the loglikelihood. E.g. {@(m)logprior(m) @(m)loglike(m)}
% mccount: What is the desired total number of monte carlo proposals per chain.
% This is the total number per chain before burn-in.
%
% Named Parameter-Value pairs:
% 'StepSize': unit-less stepsize (default=2).
% 'ThinChain': Thin all the chains by only storing every N'th step (default=10)
% 'ProgressBar': Show a text progress bar (default=true)
% 'Parallel': Run in ensemble of walkers in parallel. (default=false)
% 'BurnIn': fraction of the chain that should be removed. (default=0)
%
% OUTPUTS:
% models: A WxMxT matrix with the thinned markov chains (with T samples
% per walker). T=~(mccount/p.ThinChain)*(1 - burnin_rate).
% logP: A WxPxT matrix of log probabilities for each model in the
% models. here P is the number of functions in logPfuns.
%
% Note on cascaded evaluation of log probabilities:
% The logPfuns-argument can be specifed as a cell-array to allow a cascaded
% evaluation of the probabilities. The computationally cheapest function should be
% placed first in the cell (this will typically the prior). This allows the
% routine to avoid calculating the likelihood, if the proposed model can be
% rejected based on the prior alone.
% logPfuns={logprior loglike} is faster but equivalent to
% logPfuns={@(m)logprior(m)+loglike(m)}
%
%
% References:
% Goodman & Weare (2010), Ensemble Samplers With Affine Invariance, Comm. App. Math. Comp. Sci., Vol. 5, No. 1, 6580
% Foreman-Mackey, Hogg, Lang, Goodman (2013), emcee: The MCMC Hammer, arXiv:1202.3665
%
% WebPage: https://github.com/grinsted/gwmcmc
%
% -Aslak Grinsted 2015
persistent isoctave;
if isempty(isoctave)
isoctave = (exist ('OCTAVE_VERSION', 'builtin') > 0);
end
if nargin<3
error('GWMCMC:toofewinputs','GWMCMC requires atleast 3 inputs.')
end
M=size(minit,2);
if size(minit,1)==1
minit=bsxfun(@plus,minit,randn(M*5,M));
end
p=inputParser;
if isoctave
p=p.addParamValue('StepSize',2,@isnumeric); %addParamValue is chosen for compatibility with octave. Still Untested.
p=p.addParamValue('ThinChain',10,@isnumeric);
p=p.addParamValue('ProgressBar',false,@islogical);
p=p.addParamValue('Parallel',false,@islogical);
p=p.addParamValue('BurnIn',0,@isnumeric);
p=p.parse(varargin{:});
else
p.addParameter('StepSize',2,@isnumeric); %addParamValue is chose for compatibility with octave. Still Untested.
p.addParameter('ThinChain',10,@isnumeric);
p.addParameter('ProgressBar',false,@islogical);
p.addParameter('Parallel',false,@islogical);
p.addParameter('BurnIn',0,@isnumeric);
p.parse(varargin{:});
end
p=p.Results;
Nwalkers=size(minit,1);
if size(minit,2)*2>size(minit,1)
warning('GWMCMC:minitdimensions','Check minit dimensions.\nIt is recommended that there be atleast twice as many walkers in the ensemble as there are model dimension.')
end
if p.ProgressBar
progress=@textprogress;
else
progress=@noaction;
end
Nkeep = Nsamples + p.BurnIn; % number of samples drawn per walker
models=nan(Nwalkers,M,Nkeep); % pre-allocate output matrix
models(:,:,1)=minit; % models: A WxMxT matrix, minit: A Mx(W*T) matrix
if ~iscell(logPfuns)
logPfuns={logPfuns};
end
NPfun=numel(logPfuns);
%calculate logP state initial pos of walkers
logP=nan(Nwalkers,NPfun,Nkeep); %logP = WxPxT
for wix=1:Nwalkers
for fix=1:NPfun
v=logPfuns{fix}(minit(wix,:));
if islogical(v) %reformulate function so that false=-inf for logical constraints.
v=-1/v;logPfuns{fix}=@(m)-1/logPfuns{fix}(m); %experimental implementation of experimental feature
end
logP(wix,fix,1)=v;
end
end
if ~all(all(isfinite(logP(:,:,1))))
error('Starting points for all walkers must have finite logP')
end
reject=zeros(Nwalkers,1);
% models: A WxMxT matrix; logP: WxPxT matrix
curm = models(:,:,1); %curm: W x M matrix
curlogP = logP(:,:,1); %curlogP: W x P matrix
progress(0,0,0)
totcount=Nwalkers;
for row = 1:Nkeep % number of samples drawn per walker
for jj=1:p.ThinChain
%generate proposals for all walkers
rix = mod((1:Nwalkers)+floor(rand*(Nwalkers-1)),Nwalkers)+1; % pick a random partner (Nwalker x 1 vector)
proposedm = zeros(Nwalkers, size(minit,2)); % Nwalkers x dim matrix
zz = zeros(Nwalkers, 1); % Nwalkers x 1 vector
for i = 1:Nwalkers
while true
zz(i) = ((p.StepSize - 1)*rand(1,1) + 1).^2/p.StepSize; % scalar
proposedm(i,:) = curm(rix(i),:) - bsxfun(@times,(curm(rix(i),:)-curm(i,:)),zz(i)); % Nwalkers x dim matrix
if box(proposedm(i,:)) % The box function is the Prior PDF in the feasible region.
% Note: If a point is out of bounds, this function will return 0 = false.
break;
end
end
end
logrand=log(rand(Nwalkers,NPfun+1)); %moved outside because rand is slow inside parfor
if p.Parallel
%parallel/non-parallel code is currently mirrored in
%order to enable experimentation with separate optimization
%techniques for each branch. Parallel is not really great yet.
%TODO: use SPMD instead of parfor.
parfor wix=1:Nwalkers
cp=curlogP(wix,:);
lr=logrand(wix,:);
acceptfullstep=true;
proposedlogP=nan(1,NPfun);
if lr(1)<(numel(proposedm(wix,:))-1)*log(zz(wix))
for fix=1:NPfun
proposedlogP(fix)=logPfuns{fix}(proposedm(wix,:));
if lr(fix+1)>proposedlogP(fix)-cp(fix) || ~isreal(proposedlogP(fix)) || isnan( proposedlogP(fix) )
acceptfullstep=false;
break
end
end
else
acceptfullstep=false;
end
if acceptfullstep
curm(wix,:)=proposedm(wix,:); curlogP(wix,:)=proposedlogP;
else
reject(wix)=reject(wix)+1;
end
end
else %NON-PARALLEL
for wix=1:Nwalkers
acceptfullstep=true;
proposedlogP=nan(1,NPfun);
if logrand(wix,1)<(numel(proposedm(wix,:))-1)*log(zz(wix))
for fix=1:NPfun
proposedlogP(fix)=logPfuns{fix}(proposedm(wix,:));
if logrand(wix,fix+1)>proposedlogP(fix)-curlogP(wix,fix) || ~isreal(proposedlogP(fix)) || isnan(proposedlogP(fix))
acceptfullstep=false;
break
end
end
else
acceptfullstep=false;
end
if acceptfullstep
curm(wix,:)=proposedm(wix,:); curlogP(wix,:)=proposedlogP;
else
reject(wix)=reject(wix)+1;
end
end
end
totcount=totcount+Nwalkers;
progress((row-1+jj/p.ThinChain)/Nkeep,curm,sum(reject)/totcount)
end
models(:,:,row)=curm;
logP(:,:,row)=curlogP;
end
progress(1,0,0);
acceptance = 1 - (sum(reject)/totcount);
if p.BurnIn>0
crop=p.BurnIn;
models(:,:,1:crop)=[];
logP(:,:,1:crop)=[];
end
function textprogress(pct,curm,rejectpct)
persistent lastNchar lasttime starttime
if isempty(lastNchar)||pct==0
lasttime=cputime-10;starttime=cputime;lastNchar=0;
pct=1e-16;
end
if pct==1
fprintf('%s',repmat(char(8),1,lastNchar));lastNchar=0;
return
end
if (cputime-lasttime>0.1)
ETA=datestr((cputime-starttime)*(1-pct)/(pct*60*60*24),13);
progressmsg=[183-uint8((1:40)<=(pct*40)).*(183-'*') ''];
curmtxt=sprintf('% 9.3g\n',curm(1:min(end,20),1));
progressmsg=sprintf('\nGWMCMC %5.1f%% [%s] %s\n%3.0f%% rejected\n%s\n',pct*100,progressmsg,ETA,rejectpct*100,curmtxt);
fprintf('%s%s',repmat(char(8),1,lastNchar),progressmsg);
drawnow;lasttime=cputime;
lastNchar=length(progressmsg);
end
function noaction(varargin)