-
Notifications
You must be signed in to change notification settings - Fork 14
/
APRNumerics.hpp
596 lines (464 loc) · 27.3 KB
/
APRNumerics.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//
// Created by joeljonsson on 23.11.2020
//
#ifndef LIBAPR_APRNUMERICS_HPP
#define LIBAPR_APRNUMERICS_HPP
#include "data_structures/APR/APR.hpp"
#include "data_structures/APR/particles/ParticleData.hpp"
#include "numerics/APRFilter.hpp"
#include "numerics/APRStencil.hpp"
#include "numerics/APRTreeNumerics.hpp"
namespace APRNumerics {
/**
* Compute the gradient in a given dimension using level-adaptive central finite differences
* @tparam InputType
* @tparam GradientType must be floating point
* @param apr
* @param inputParticles
* @param outputParticles
* @param dimension dimension along which the gradient is computed (0: y, 1: x, 2: z)
* @param delta pixel size used to scale the gradient (default 1.0f)
*/
template<typename InputType, typename GradientType,
std::enable_if_t<std::is_floating_point<GradientType>::value, bool> = true>
void gradient_cfd(APR& apr,
const ParticleData<InputType>& inputParticles,
ParticleData<GradientType>& outputParticles,
int dimension,
float delta = 1.0f);
/**
* Compute the gradient in a given dimension using level-adaptive Sobel filters (smoothing perpendicular to the
* gradient dimension, followed by central finite differences). Combines the operations into a dense 3x3x3 convolution.
* @tparam InputType
* @tparam GradientType
* @param apr
* @param inputParticles
* @param outputParticles
* @param dimension dimension along which the gradient is computed (0: y, 1: x, 2: z)
* @param delta pixel size used to scale the gradient (default: 1)
*/
template<typename InputType, typename GradientType,
std::enable_if_t<std::is_floating_point<GradientType>::value, bool> = true>
void gradient_sobel(APR& apr, const ParticleData<InputType>& inputParticles, ParticleData<GradientType>& outputParticles,
int dimension, float delta = 1.0f);
/**
* Compute the gradient magnitude using APRNumerics::gradient_cfd in each dimension.
* @tparam InputType
* @tparam GradientType
* @param apr
* @param inputParticles
* @param outputParticles
* @param deltas pixel size in each dimension, used to scale the gradients (default: {1, 1, 1})
*/
template<typename InputType, typename GradientType,
std::enable_if_t<std::is_floating_point<GradientType>::value, bool> = true>
void gradient_magnitude_cfd(APR& apr, const ParticleData<InputType>& inputParticles, ParticleData<GradientType>& outputParticles,
const std::vector<float>& deltas = {1.0f, 1.0f, 1.0f});
/**
* Compute the gradient magnitude using APRNumerics::gradient_sobel in each dimension.
* @tparam InputType
* @tparam GradientType
* @param apr
* @param inputParticles
* @param outputParticles
* @param deltas pixel size in each dimension, used to scale the gradients (default: {1, 1, 1})
*/
template<typename InputType, typename GradientType,
std::enable_if_t<std::is_floating_point<GradientType>::value, bool> = true>
void gradient_magnitude_sobel(APR& apr, const ParticleData<InputType>& inputParticles, ParticleData<GradientType>& outputParticles,
const std::vector<float>& deltas = {1.0f, 1.0f, 1.0f});
/**
* Computes the local standard deviation in a given window around each particle. At coarser resolution particles,
* the window is rescaled and weighted
* @tparam InputType
* @tparam OutputType
* @param apr
* @param inputParticles
* @param outputParticles
* @param size size of the window in each dimension
*/
template<typename InputType, typename OutputType,
std::enable_if_t<std::is_floating_point<OutputType>::value, bool> = true>
void local_std(APR& apr, const ParticleData<InputType>& inputParticles, ParticleData<OutputType>& outputParticles,
const std::vector<int>& size = {3, 3, 3});
/**
* Apply a filter to each particle and its face-side neighbours in a given dimension.
*/
template<typename S,typename U>
void face_neighbour_filter(APR &apr, const ParticleData<S>& input_data, ParticleData<U>& output_data,
const std::vector<float>& filter, int dimension);
/**
* Successively apply a filter to each particle and its face-side neighbours in each dimension (y -> x -> z)
*/
template<typename S,typename U>
void seperable_face_neighbour_filter(APR &apr, const ParticleData<S>& input_data, ParticleData<U>& output_data,
const std::vector<float>& filter, int repeats = 1);
template<typename InputType, typename OutputType>
void adaptive_min(APR& apr, const ParticleData<InputType>& input_data, ParticleData<OutputType>& loc_min,
int num_tree_smooth=3, int level_delta=1, int num_part_smooth=2);
template<typename InputType, typename OutputType>
void adaptive_max(APR& apr, const ParticleData<InputType>& input_data, ParticleData<OutputType>& loc_max,
int num_tree_smooth=3, int level_delta=1, int num_part_smooth=2);
template<typename InputType, typename StencilType, typename OutputType,
std::enable_if_t<std::is_floating_point<StencilType>::value, bool> = true>
void richardson_lucy(APR &apr, ParticleData<InputType> &particle_input, ParticleData<OutputType> &particle_output,
std::vector<PixelData<StencilType>>& psf_vec, std::vector<PixelData<StencilType>>& psf_flipped_vec,
int number_iterations, bool resume=false);
template<typename InputType, typename StencilType, typename OutputType,
std::enable_if_t<std::is_floating_point<StencilType>::value, bool> = true>
void richardson_lucy(APR &apr, ParticleData<InputType> &particle_input, ParticleData<OutputType> &particle_output,
PixelData<StencilType> &psf, int number_iterations, bool use_stencil_downsample=true,
bool normalize=false, bool resume=false);
template<typename InputType, typename StencilType, typename OutputType,
std::enable_if_t<std::is_floating_point<StencilType>::value, bool> = true>
void richardson_lucy_tv(APR &apr, ParticleData<InputType> &particle_input, ParticleData<OutputType> &particle_output,
std::vector<PixelData<StencilType>>& psf_vec, std::vector<PixelData<StencilType>>& psf_flipped_vec,
int number_iterations, float reg_factor, bool resume);
template<typename InputType, typename StencilType, typename OutputType,
std::enable_if_t<std::is_floating_point<StencilType>::value, bool> = true>
void richardson_lucy_tv(APR &apr, ParticleData<InputType> &particle_input, ParticleData<OutputType> &particle_output,
PixelData<StencilType> &psf, int number_iterations, float reg_factor, bool use_stencil_downsample,
bool normalize, bool resume);
/**
* Computes the divergence of the normalized gradient using level-adaptive central finite differences.
*/
template<typename InputType, typename GradientType,
std::enable_if_t<std::is_floating_point<GradientType>::value, bool> = true>
void div_norm_grad(APR &apr,
const ParticleData<InputType> &input,
ParticleData<GradientType> &grad_x,
ParticleData<GradientType> &grad_y,
ParticleData<GradientType> &grad_z,
ParticleData<GradientType> &result,
const std::vector<float>& deltas = {1.0f, 1.0f, 1.0f});
}
template<typename InputType, typename GradientType,
std::enable_if_t<std::is_floating_point<GradientType>::value, bool>>
void APRNumerics::gradient_cfd(APR& apr,
const ParticleData<InputType>& inputParticles,
ParticleData<GradientType>& outputParticles,
const int dimension,
const float delta) {
if (dimension < 0 || dimension > 2) {
throw std::invalid_argument("APRNumerics::gradient_cfd argument 'dimension' must be 0 (y), 1 (x) or 2 (z)");
}
PixelData<GradientType> stencil((dimension == 0) ? 3 : 1, (dimension == 1) ? 3 : 1, (dimension == 2) ? 3 : 1);
stencil.mesh[0] = -1.0f/(2*delta);
stencil.mesh[1] = 0;
stencil.mesh[2] = 1.0f/(2*delta);
std::vector<PixelData<GradientType>> stencil_vec;
APRStencil::get_rescaled_stencils(stencil, stencil_vec, apr.level_max() - apr.level_min());
APRFilter::convolve_pencil(apr, stencil_vec, inputParticles, outputParticles, true);
}
template<typename InputType, typename GradientType,
std::enable_if_t<std::is_floating_point<GradientType>::value, bool>>
void APRNumerics::gradient_sobel(APR& apr,
const ParticleData<InputType>& inputParticles,
ParticleData<GradientType>& outputParticles,
const int dimension,
const float delta) {
if (dimension < 0 || dimension > 2) {
throw std::invalid_argument("APRNumerics::gradient_sobel argument 'dimension' must be 0 (y), 1 (x) or 2 (z)");
}
PixelData<GradientType> stencil;
if(apr.number_dimensions() == 3) {
auto tmp = APRStencil::create_sobel_filter<GradientType>(dimension, delta);
stencil.swap(tmp);
} else if(apr.number_dimensions() == 2 && dimension != 2) {
auto tmp = APRStencil::create_sobel_filter2d<GradientType>(dimension, delta);
stencil.swap(tmp);
} else {
return gradient_cfd(apr, inputParticles, outputParticles, dimension, delta);
}
std::vector<PixelData<GradientType>> stencil_vec;
APRStencil::get_rescaled_stencils(stencil, stencil_vec, apr.level_max() - apr.level_min());
APRFilter::convolve_pencil(apr, stencil_vec, inputParticles, outputParticles, true);
}
template<typename InputType, typename GradientType,
std::enable_if_t<std::is_floating_point<GradientType>::value, bool>>
void APRNumerics::gradient_magnitude_cfd(APR& apr,
const ParticleData<InputType>& inputParticles,
ParticleData<GradientType>& outputParticles,
const std::vector<float>& deltas) {
outputParticles.init(apr.total_number_particles());
ParticleData<GradientType> tmp;
// compute y gradient
gradient_cfd(apr, inputParticles, outputParticles, 0, deltas[0]);
// square the result
auto square_h = [](const GradientType& a) -> GradientType { return a*a; };
outputParticles.unary_map(outputParticles, square_h);
auto add_square_h = [](const GradientType &a, const GradientType &b) -> GradientType { return a + b*b; };
if (apr.org_dims(1) > 1) {
gradient_cfd(apr, inputParticles, tmp, 1, deltas[1]); // compute x gradient
outputParticles.binary_map(tmp, outputParticles, add_square_h); // add squared x-gradient to outputParticles
}
if (apr.org_dims(2) > 1) {
gradient_cfd(apr, inputParticles, tmp, 2, deltas[2]); // compute z gradient
outputParticles.binary_map(tmp, outputParticles, add_square_h); // add squared x-gradient to outputParticles
}
// square root
auto sqrtf_h = [](const GradientType& a) -> GradientType { return sqrtf(a); };
outputParticles.unary_map(outputParticles, sqrtf_h);
}
template<typename InputType, typename GradientType,
std::enable_if_t<std::is_floating_point<GradientType>::value, bool>>
void APRNumerics::gradient_magnitude_sobel(APR& apr,
const ParticleData<InputType>& inputParticles,
ParticleData<GradientType>& outputParticles,
const std::vector<float>& deltas) {
outputParticles.init(apr.total_number_particles());
ParticleData<GradientType> tmp;
// compute y gradient
gradient_sobel(apr, inputParticles, outputParticles, 0, deltas[0]);
// square the result
auto square_h = [](const GradientType& a) -> GradientType { return a*a; };
outputParticles.unary_map(outputParticles, square_h);
auto add_square_h = [](const GradientType &a, const GradientType &b) -> GradientType { return a + b*b; };
if (apr.org_dims(1) > 1) {
gradient_sobel(apr, inputParticles, tmp, 1, deltas[1]); // compute x gradient
outputParticles.binary_map(tmp, outputParticles, add_square_h); // add squared x-gradient to outputParticles
}
if (apr.org_dims(2) > 1) {
gradient_sobel(apr, inputParticles, tmp, 2, deltas[2]); // compute z gradient
outputParticles.binary_map(tmp, outputParticles, add_square_h); // add squared gradient to outputParticles
}
// square root
auto sqrtf_h = [](const GradientType& a) -> GradientType { return sqrtf(a); };
outputParticles.unary_map(outputParticles, sqrtf_h);
}
template<typename S,typename U>
void APRNumerics::seperable_face_neighbour_filter(APR &apr, const ParticleData<S>& input_data, ParticleData<U>& output_data,
const std::vector<float>& filter, const int repeats) {
output_data.init(apr.total_number_particles());
ParticleData<U> tmp;
tmp.copy(input_data);
for(int i = 0; i < repeats; ++i) {
face_neighbour_filter(apr, tmp, output_data, filter, 0);
face_neighbour_filter(apr, output_data, tmp, filter, 1);
face_neighbour_filter(apr, tmp, output_data, filter, 2);
output_data.swap(tmp);
}
output_data.swap(tmp);
}
template<typename S,typename U>
void APRNumerics::face_neighbour_filter(APR &apr, const ParticleData<S>& input_data, ParticleData<U>& output_data,
const std::vector<float>& filter, const int dimension) {
output_data.init(apr.total_number_particles());
int faces[2] = {2*dimension, 2*dimension+1};
auto apr_iterator = apr.random_iterator();
auto neighbour_iterator = apr.random_iterator();
const std::vector<float> filter_t = {filter[2], filter[0]};
for (int level = apr_iterator.level_min(); level <= apr_iterator.level_max(); ++level) {
#ifdef HAVE_OPENMP
#pragma omp parallel for schedule(dynamic) firstprivate(apr_iterator, neighbour_iterator)
#endif
for (int z = 0; z < apr_iterator.z_num(level); z++) {
for (int x = 0; x < apr_iterator.x_num(level); ++x) {
for (apr_iterator.begin(level, z, x); apr_iterator < apr_iterator.end(); apr_iterator++) {
float current_intensity = input_data[apr_iterator];
output_data[apr_iterator] = current_intensity * filter[1];
for (int i = 0; i < 2; ++i) {
float intensity_sum = 0;
float count_neighbours = 0;
const int direction = faces[i];
apr_iterator.find_neighbours_in_direction(direction);
// Neighbour Particle Cell Face definitions [+y,-y,+x,-x,+z,-z] = [0,1,2,3,4,5]
for (int index = 0; index < apr_iterator.number_neighbours_in_direction(direction); ++index) {
if (neighbour_iterator.set_neighbour_iterator(apr_iterator, direction, index)) {
intensity_sum += input_data[neighbour_iterator];
count_neighbours++;
}
}
if (count_neighbours > 0) {
output_data[apr_iterator] += filter_t[i] * intensity_sum / count_neighbours;
} else {
output_data[apr_iterator] += filter_t[i] * current_intensity;
}
}
}
}
}
}
}
template<typename InputType, typename OutputType,
std::enable_if_t<std::is_floating_point<OutputType>::value, bool>>
void APRNumerics::local_std(APR& apr,
const ParticleData<InputType>& inputParticles,
ParticleData<OutputType>& outputParticles,
const std::vector<int>& size) {
// box filter
auto box_dense = APRStencil::create_mean_filter<OutputType>(size);
ParticleData<OutputType> loc_mean;
ParticleData<OutputType> input_temp;
ParticleData<OutputType> tree_data;
// copy input particles and fill tree by averaging
input_temp.copy(inputParticles);
APRTreeNumerics::fill_tree_mean(apr, input_temp, tree_data);
// compute local means using
APRFilter::convolve_pencil(apr, box_dense, input_temp, tree_data, loc_mean, true, true, true);
// square input copy and tree data
auto square_h = [](const OutputType &a) -> OutputType { return a * a; };
input_temp.unary_map(input_temp, square_h);
tree_data.unary_map(tree_data, square_h);
// compute local means of squared data
APRFilter::convolve_pencil(apr, box_dense, input_temp, tree_data, outputParticles, true, true, true);
// compute standard deviation
auto fun_h = [](const OutputType &a, const OutputType &b) -> OutputType {return sqrtf(std::max(a-b*b, 0.0f));};
outputParticles.binary_map(loc_mean, outputParticles, fun_h);
}
template<typename InputType, typename OutputType>
void APRNumerics::adaptive_min(APR& apr, const ParticleData<InputType>& input_data, ParticleData<OutputType>& loc_min,
const int num_tree_smooth, const int level_delta, const int num_part_smooth) {
ParticleData<float> tree_data;
APRTreeNumerics::fill_tree_min(apr, input_data, tree_data);
ParticleData<float> tree_data_smooth;
APRTreeNumerics::seperable_face_neighbour_filter(apr, tree_data, tree_data_smooth,
{0.25f, 0.5f, 0.25f}, num_tree_smooth, level_delta);
APRTreeNumerics::push_down_tree(apr, tree_data_smooth, level_delta);
APRTreeNumerics::push_to_leaves(apr, tree_data_smooth, tree_data);
APRNumerics::seperable_face_neighbour_filter(apr, tree_data, loc_min, {0.25f, 0.5f, 0.25f}, num_part_smooth);
}
template<typename InputType, typename OutputType>
void APRNumerics::adaptive_max(APR& apr, const ParticleData<InputType>& input_data, ParticleData<OutputType>& loc_max,
const int num_tree_smooth, const int level_delta, const int num_part_smooth) {
ParticleData<float> tree_data;
APRTreeNumerics::fill_tree_max(apr, input_data, tree_data);
ParticleData<float> tree_data_smooth;
APRTreeNumerics::seperable_face_neighbour_filter(apr, tree_data, tree_data_smooth,
{0.25f, 0.5f, 0.25f}, num_tree_smooth, level_delta);
APRTreeNumerics::push_down_tree(apr, tree_data_smooth, level_delta);
tree_data.init(apr.total_number_particles());
APRTreeNumerics::push_to_leaves(apr, tree_data_smooth, tree_data);
APRNumerics::seperable_face_neighbour_filter(apr, tree_data, loc_max, {0.25f, 0.5f, 0.25f}, num_part_smooth);
}
template<typename InputType, typename GradientType,
std::enable_if_t<std::is_floating_point<GradientType>::value, bool>>
void APRNumerics::div_norm_grad(APR &apr,
const ParticleData<InputType> &input,
ParticleData<GradientType> &grad_x,
ParticleData<GradientType> &grad_y,
ParticleData<GradientType> &grad_z,
ParticleData<GradientType> &result,
const std::vector<float>& deltas) {
auto add_h = [](const GradientType& a, const GradientType& b) -> GradientType { return a + b; };
/// compute gradient in y, x and z directions using level-adaptive central finite differences
gradient_cfd(apr, input, grad_y, 0, deltas[0]);
if(apr.org_dims(1) > 1) {
gradient_cfd(apr, input, grad_x, 1, deltas[1]);
} else {
grad_x.init(input.size()); // check if the size is correct. if it is, this should do nothing
grad_x.set_to_zero();
}
if(apr.org_dims(2) > 1) {
gradient_cfd(apr, input, grad_z, 2, deltas[2]);
} else {
grad_z.init(input.size()); // check if the size is correct. if it is, this should do nothing
grad_z.set_to_zero();
}
/// normalize the gradients
#ifdef HAVE_OPENMP
#pragma omp parallel for schedule(static) default(none) shared(grad_x, grad_y, grad_z)
#endif
for(uint64_t i = 0; i < grad_y.size(); ++i) {
float gradmag = std::sqrt(grad_z[i] * grad_z[i] + grad_x[i] * grad_x[i] + grad_y[i] * grad_y[i]);
if(gradmag > 1e-6) {
grad_z[i] /= gradmag;
grad_x[i] /= gradmag;
grad_y[i] /= gradmag;
}
}
/// compute divergence
gradient_cfd(apr, grad_y, result, 0, deltas[0]); // y-gradient -> result
if(apr.x_num(apr.level_max()) > 1) {
gradient_cfd(apr, grad_x, grad_y, 1, deltas[1]); // x-gradient -> grad_y
result.binary_map(grad_y, result, add_h); // add grad_y to result
}
if(apr.z_num(apr.level_max()) > 1) {
gradient_cfd(apr, grad_z, grad_y, 2, deltas[2]); // z-gradient -> grad_y
result.binary_map(grad_y, result, add_h); // add grad_y to result
}
}
template<typename InputType, typename StencilType, typename OutputType,
std::enable_if_t<std::is_floating_point<StencilType>::value, bool>>
void APRNumerics::richardson_lucy_tv(APR &apr, ParticleData<InputType> &particle_input, ParticleData<OutputType> &particle_output,
std::vector<PixelData<StencilType>>& psf_vec, std::vector<PixelData<StencilType>>& psf_flipped_vec,
int number_iterations, float reg_factor, bool resume) {
auto divide_h = [](const StencilType& a, const InputType& b) -> StencilType {return b / a;};
// if not continuing from previous iterations, initialize output with 1s
if(!resume) {
particle_output.init(apr.total_number_particles());
particle_output.fill(1.0f);
}
ParticleData<StencilType> relative_blur(apr.total_number_particles());
ParticleData<StencilType> error_est(apr.total_number_particles());
ParticleData<StencilType> tmp1(apr.total_number_particles());
ParticleData<StencilType> tmp2(apr.total_number_particles());
ParticleData<StencilType> tmp3(apr.total_number_particles());
for(int iter = 0; iter < number_iterations; ++iter) {
APRFilter::convolve(apr, psf_flipped_vec, particle_output, relative_blur); // re-blur estimate
relative_blur.binary_map(particle_input, relative_blur, divide_h); // particle_input / relative_blur
APRFilter::convolve(apr, psf_vec, relative_blur, error_est); // correlate ratio
div_norm_grad(apr, particle_output, tmp1, tmp2, tmp3, relative_blur); // divergence of normalized gradient
// update estimate
#ifdef HAVE_OPENMP
#pragma omp parallel for schedule(static) default(none) shared(particle_output, error_est, relative_blur, reg_factor)
#endif
for(uint64_t i = 0; i < particle_output.data.size(); ++i) {
particle_output[i] = particle_output[i] * error_est[i] / (1.0f - reg_factor * relative_blur[i]);
}
}
}
template<typename InputType, typename StencilType, typename OutputType,
std::enable_if_t<std::is_floating_point<StencilType>::value, bool>>
void APRNumerics::richardson_lucy_tv(APR &apr, ParticleData<InputType> &particle_input, ParticleData<OutputType> &particle_output,
PixelData<StencilType> &psf, int number_iterations, float reg_factor, bool use_stencil_downsample,
bool normalize, bool resume) {
PixelData<StencilType> psf_flipped(psf, false);
for(size_t i = 0; i < psf.mesh.size(); ++i) {
psf_flipped.mesh[i] = psf.mesh[psf.mesh.size()-1-i];
}
std::vector<PixelData<StencilType>> psf_vec;
std::vector<PixelData<StencilType>> psf_flipped_vec;
int nstencils = use_stencil_downsample ? apr.level_max() - apr.level_min() : 1;
APRStencil::get_downsampled_stencils(psf, psf_vec, nstencils, normalize);
APRStencil::get_downsampled_stencils(psf_flipped, psf_flipped_vec, nstencils, normalize);
richardson_lucy_tv(apr, particle_input, particle_output, psf_vec, psf_flipped_vec, number_iterations, reg_factor, resume);
}
template<typename InputType, typename StencilType, typename OutputType,
std::enable_if_t<std::is_floating_point<StencilType>::value, bool>>
void APRNumerics::richardson_lucy(APR &apr, ParticleData<InputType> &particle_input, ParticleData<OutputType> &particle_output,
std::vector<PixelData<StencilType>>& psf_vec, std::vector<PixelData<StencilType>>& psf_flipped_vec,
int number_iterations, bool resume) {
auto divide_h = [](const StencilType& a, const InputType& b) -> StencilType {return b/a;};
auto multiply_h = [](const StencilType& a, const StencilType&b) -> StencilType { return a*b; };
// if not continuing from previous iterations, initialize output with 1s
if(!resume) {
particle_output.init(apr.total_number_particles());
particle_output.fill(1.0f);
}
ParticleData<StencilType> relative_blur(apr.total_number_particles());
ParticleData<StencilType> error_est(apr.total_number_particles());
for(int iter = 0; iter < number_iterations; ++iter) {
APRFilter::convolve_pencil(apr, psf_flipped_vec, particle_output, relative_blur); // re-blur current estimate
relative_blur.binary_map(particle_input, relative_blur, divide_h); // input / blurred estimate
APRFilter::convolve_pencil(apr, psf_vec, relative_blur, error_est); // correlate ratio
particle_output.binary_map(error_est, particle_output, multiply_h); // update estimate
}
}
template<typename InputType, typename StencilType,typename OutputType,
std::enable_if_t<std::is_floating_point<StencilType>::value, bool>>
void APRNumerics::richardson_lucy(APR &apr, ParticleData<InputType> &particle_input, ParticleData<OutputType> &particle_output,
PixelData<StencilType>& psf, int number_iterations, bool use_stencil_downsample, bool normalize,
bool resume) {
PixelData<StencilType> psf_flipped(psf, false);
for(size_t i = 0; i < psf.mesh.size(); ++i) {
psf_flipped.mesh[i] = psf.mesh[psf.mesh.size()-1-i];
}
std::vector<PixelData<StencilType>> psf_vec;
std::vector<PixelData<StencilType>> psf_flipped_vec;
int nstencils = use_stencil_downsample ? apr.level_max() - apr.level_min() : 1;
APRStencil::get_downsampled_stencils(psf, psf_vec, nstencils, normalize);
APRStencil::get_downsampled_stencils(psf_flipped, psf_flipped_vec, nstencils, normalize);
richardson_lucy(apr, particle_input, particle_output, psf_vec, psf_flipped_vec, number_iterations, resume);
}
#endif //LIBAPR_APRNUMERICS_HPP