forked from codeplaysoftware/syclacademy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.cpp
181 lines (147 loc) · 5.61 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
SYCL Academy (c)
SYCL Academy is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.
You should have received a copy of the license along with this
work. If not, see <http://creativecommons.org/licenses/by-sa/4.0/>.
*/
#define CATCH_CONFIG_MAIN
#include <catch2/catch.hpp>
#if __has_include(<SYCL/sycl.hpp>)
#include <SYCL/sycl.hpp>
#else
#include <CL/sycl.hpp>
#endif
class kernel_a_1;
class kernel_b_1;
class kernel_c_1;
class kernel_d_1;
class kernel_a_2;
class kernel_b_2;
class kernel_c_2;
class kernel_d_2;
class usm_selector : public sycl::device_selector {
public:
int operator()(const sycl::device& dev) const {
if (dev.has(sycl::aspect::usm_device_allocations)) {
if (dev.has(sycl::aspect::gpu)) return 2;
return 1;
}
return -1;
}
};
TEST_CASE("buffer_accessor_diamond", "managing_dependencies_solution") {
constexpr size_t dataSize = 1024;
int inA[dataSize], inB[dataSize], inC[dataSize], out[dataSize];
for (int i = 0; i < dataSize; ++i) {
inA[i] = static_cast<float>(i);
inB[i] = static_cast<float>(i);
inC[i] = static_cast<float>(i);
out[i] = 0.0f;
}
try {
auto defaultQueue = sycl::queue{};
auto bufInA = sycl::buffer{inA, sycl::range{dataSize}};
auto bufInB = sycl::buffer{inB, sycl::range{dataSize}};
auto bufInC = sycl::buffer{inC, sycl::range{dataSize}};
auto bufOut = sycl::buffer{out, sycl::range{dataSize}};
defaultQueue.submit([&](sycl::handler& cgh) {
sycl::accessor acc{bufInA, cgh, sycl::read_write};
cgh.parallel_for<kernel_a_1>(sycl::range{dataSize}, [=](sycl::id<1> idx) {
acc[idx] = acc[idx] * 2.0f;
});
});
defaultQueue.submit([&](sycl::handler& cgh) {
sycl::accessor accIn{bufInA, cgh, sycl::read_only};
sycl::accessor accOut{bufInB, cgh, sycl::write_only};
cgh.parallel_for<kernel_b_1>(sycl::range{dataSize}, [=](sycl::id<1> idx) {
accOut[idx] += accIn[idx];
});
});
defaultQueue.submit([&](sycl::handler& cgh) {
sycl::accessor accIn{bufInA, cgh, sycl::read_only};
sycl::accessor accOut{bufInC, cgh, sycl::write_only};
cgh.parallel_for<kernel_c_1>(sycl::range{dataSize}, [=](sycl::id<1> idx) {
accOut[idx] -= accIn[idx];
});
});
defaultQueue.submit([&](sycl::handler& cgh) {
sycl::accessor accInA{bufInB, cgh, sycl::read_only};
sycl::accessor accInB{bufInC, cgh, sycl::read_only};
sycl::accessor accOut{bufOut, cgh, sycl::write_only};
cgh.parallel_for<kernel_d_1>(sycl::range{dataSize}, [=](sycl::id<1> idx) {
accOut[idx] = accInA[idx] + accInB[idx];
});
});
defaultQueue.wait_and_throw();
} catch (const sycl::exception& e) {
std::cout << "Exception caught: " << e.what() << std::endl;
}
for (int i = 0; i < dataSize; ++i) {
REQUIRE(out[i] == i * 2.0f);
}
}
TEST_CASE("usm_diamond", "usm_vector_add_solution") {
constexpr size_t dataSize = 1024;
int inA[dataSize], inB[dataSize], inC[dataSize], out[dataSize];
for (int i = 0; i < dataSize; ++i) {
inA[i] = static_cast<float>(i);
inB[i] = static_cast<float>(i);
inC[i] = static_cast<float>(i);
out[i] = 0.0f;
}
try {
auto usmQueue = sycl::queue{usm_selector{}};
#ifdef SYCL_ACADEMY_USE_COMPUTECPP
auto devicePtrInA = sycl::experimental::usm_wrapper<float>{
sycl::malloc_device<float>(dataSize, usmQueue)};
auto devicePtrInB = sycl::experimental::usm_wrapper<float>{
sycl::malloc_device<float>(dataSize, usmQueue)};
auto devicePtrInC = sycl::experimental::usm_wrapper<float>{
sycl::malloc_device<float>(dataSize, usmQueue)};
auto devicePtrOut = sycl::experimental::usm_wrapper<float>{
sycl::malloc_device<float>(dataSize, usmQueue)};
#else
auto devicePtrInA = sycl::malloc_device<float>(dataSize, usmQueue);
auto devicePtrInB = sycl::malloc_device<float>(dataSize, usmQueue);
auto devicePtrInC = sycl::malloc_device<float>(dataSize, usmQueue);
auto devicePtrOut = sycl::malloc_device<float>(dataSize, usmQueue);
#endif
auto e1 = usmQueue.memcpy(devicePtrInA, inA, sizeof(float) * dataSize);
auto e2 = usmQueue.memcpy(devicePtrInB, inB, sizeof(float) * dataSize);
auto e3 = usmQueue.memcpy(devicePtrInC, inC, sizeof(float) * dataSize);
auto e4 = usmQueue.parallel_for<kernel_a_2>(
sycl::range{dataSize}, {e1, e2, e3}, [=](sycl::id<1> idx) {
auto globalId = idx[0];
devicePtrInA[globalId] = devicePtrInA[globalId] * 2.0f;
});
auto e5 = usmQueue.parallel_for<kernel_b_2>(
sycl::range{dataSize}, e4, [=](sycl::id<1> idx) {
auto globalId = idx[0];
devicePtrInB[globalId] += devicePtrInA[globalId];
});
auto e6 = usmQueue.parallel_for<kernel_c_2>(
sycl::range{dataSize}, e4, [=](sycl::id<1> idx) {
auto globalId = idx[0];
devicePtrInC[globalId] -= devicePtrInA[globalId];
});
auto e7 = usmQueue.parallel_for<kernel_d_2>(
sycl::range{dataSize}, {e5, e6}, [=](sycl::id<1> idx) {
auto globalId = idx[0];
devicePtrOut[globalId] =
devicePtrInB[globalId] + devicePtrInC[globalId];
});
auto e8 = usmQueue.memcpy(out, devicePtrOut, sizeof(float) * dataSize, e7);
e8.wait();
sycl::free(devicePtrInA, usmQueue);
sycl::free(devicePtrInB, usmQueue);
sycl::free(devicePtrInC, usmQueue);
sycl::free(devicePtrOut, usmQueue);
usmQueue.throw_asynchronous();
} catch (const sycl::exception& e) {
std::cout << "Exception caught: " << e.what() << std::endl;
}
for (int i = 0; i < dataSize; ++i) {
REQUIRE(out[i] == i * 2.0f);
}
}