-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathImage_Dataset_Generator.py
58 lines (43 loc) · 1.43 KB
/
Image_Dataset_Generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import cv2
import numpy as np
import os
import dlib
from imutils import face_utils
from imutils.face_utils import FaceAligner
detector = dlib.get_frontal_face_detector()
shape_predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
face_aligner = FaceAligner(shape_predictor, desiredFaceWidth=200)
#face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')
video_capture = cv2.VideoCapture(0)
name = input("Enter name of person:")
path = 'images'
print(path)
directory = os.path.join(path, name)
print(directory)
if not os.path.exists(directory):
os.makedirs(directory, exist_ok = 'True')
number_of_images = 0
MAX_NUMBER_OF_IMAGES = 50
count = 0
while number_of_images < MAX_NUMBER_OF_IMAGES:
ret, frame = video_capture.read()
frame = cv2.flip(frame, 1)
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#faces = face_cascade.detectMultiScale(frame, 1.3, 5)
faces = detector(frame_gray)
if len(faces) == 1:
face = faces[0]
(x, y, w, h) = face_utils.rect_to_bb(face)
face_img = frame_gray[y-50:y + h+100, x-50:x + w+100]
face_aligned = face_aligner.align(frame, frame_gray, face)
if count == 5:
cv2.imwrite(os.path.join(directory, str(name+str(number_of_images)+'.jpg')), face_aligned)
number_of_images += 1
count = 0
print(count)
count+=1
cv2.imshow('Video', frame)
if(cv2.waitKey(1) & 0xFF == ord('q')):
break
video_capture.release()
cv2.destroyAllWindows()