forked from pth1993/AIRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_circle_hard.py
executable file
·226 lines (193 loc) · 9.13 KB
/
main_circle_hard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import numpy as np
from torch.utils.data import DataLoader
from utils.circle_hard_data import calculate_score_per_domain, MultiDomainDatasetTrain, SingleDomainDatasetTest
from tqdm import tqdm
from models.AIRL import FeatureExtractorCircle, Transformer, EvolveClassifier, AIRL
from datetime import datetime
import random
import argparse
import pickle
import os
start_time = datetime.now()
parser = argparse.ArgumentParser()
parser.add_argument('--train_batch_size', type=int, default=128)
parser.add_argument('--test_batch_size', type=int, default=1024)
parser.add_argument('--max_epoch', type=int, default=150)
parser.add_argument('--domain_split_index', type=int)
parser.add_argument('--num_test_domain', type=int)
parser.add_argument('--model_name', type=str)
parser.add_argument('--gpu')
parser.add_argument('--seed', type=int)
parser.add_argument('--mode')
args = parser.parse_args()
SEED = args.seed
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
max_epoch = args.max_epoch
train_batch_size = args.train_batch_size
test_batch_size = args.test_batch_size
domain_split_index = args.domain_split_index
model_name = args.model_name
num_test_domain = args.num_test_domain
data_dir = 'datasets/processed_data/circle_hard'
gpu = args.gpu
if gpu != 'osc':
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
out_dir = 'saved_model/circle_hard/stream'
if not os.path.exists(out_dir):
os.makedirs(out_dir)
num_label = 2
num_workers = 0
mode = args.mode
train_dataset = MultiDomainDatasetTrain(data_dir=data_dir, dataset='train', domain_split_index=domain_split_index)
val_dataset = MultiDomainDatasetTrain(data_dir=data_dir, dataset='val', domain_split_index=domain_split_index)
test_id_dataset = MultiDomainDatasetTrain(data_dir=data_dir, dataset='test_id', domain_split_index=domain_split_index)
test_od_dataset_list = [SingleDomainDatasetTest(data_dir=data_dir, current_year=domain_split_index-1, num_test_domain=k)
for k in range(num_test_domain)]
train_dataloader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True, num_workers=num_workers,
pin_memory=True)
val_dataloader = DataLoader(val_dataset, batch_size=test_batch_size, shuffle=False, num_workers=num_workers,
pin_memory=True)
test_id_dataloader = DataLoader(test_id_dataset, batch_size=test_batch_size, shuffle=False, num_workers=num_workers,
pin_memory=True)
test_od_dataloader_list = [DataLoader(test_od_dataset, batch_size=test_batch_size, shuffle=True,
num_workers=num_workers, pin_memory=True)
for test_od_dataset in test_od_dataset_list]
feature_extractor = FeatureExtractorCircle(hidden_dim=32, output_dim=32, num_layer=4)
transformer = Transformer(input_dim=32, output_dim=32)
evolve_classifier = EvolveClassifier(hidden_dim=128, output_dim=(32 * 32 + 32 + 32 + 1))
model = AIRL(feature_extractor, transformer, evolve_classifier, n_output=1, ts_coef=0, lr=0.001, device=device)
model = model.to(device)
if mode == 'train':
# training
best_val_acc = float('-inf')
val_acc_list = []
for epoch in range(max_epoch):
print("Iteration %d:" % (epoch + 1))
model.train()
epoch_loss = 0
predict_list = np.empty(0)
lb_list = np.empty(0)
for i, batch in enumerate(tqdm(train_dataloader)):
img = batch['img'].to(device)
lb = batch['lb'].to(device).float()
loss, predict = model(img, lb, num_label, 'train')
predict_list = np.concatenate((predict_list, predict.cpu().detach().numpy()), axis=0)
lb_list = np.concatenate((lb_list, lb.flatten().cpu().numpy()), axis=0)
epoch_loss += loss.item()
predict_list = 1 / (1 + np.exp(-predict_list))
predict_list = np.where(predict_list < 0.5, 0, 1)
acc = np.mean(lb_list == predict_list)
print('Train loss: %.4f - Train ACC: %.4f' % (epoch_loss / (i + 1), acc))
model.eval()
with torch.no_grad():
predict_list = np.empty(0)
lb_list = np.empty(0)
for i, batch in enumerate(tqdm(val_dataloader)):
img = batch['img'].to(device)
lb = batch['lb'].to(device).float()
loss, predict = model(img, lb, num_label)
predict_list = np.concatenate((predict_list, predict.cpu().detach().numpy()), axis=0)
lb_list = np.concatenate((lb_list, lb.flatten().cpu().numpy()), axis=0)
predict_list = 1 / (1 + np.exp(-predict_list))
predict_list = np.where(predict_list < 0.5, 0, 1)
acc = np.mean(lb_list == predict_list)
val_acc_list.append(acc)
print('Val ACC: %.4f' % acc)
if best_val_acc < acc:
best_val_acc = acc
torch.save({'model_state_dict': model.state_dict()},
os.path.join(out_dir, '%s_%s_%d_%d.ckpt'
% (model_name, args.seed, domain_split_index, num_test_domain)))
model.eval()
with torch.no_grad():
predict_list = np.empty(0)
lb_list = np.empty(0)
for i, batch in enumerate(tqdm(test_id_dataloader)):
img = batch['img'].to(device)
lb = batch['lb'].to(device).float()
loss, predict = model(img, lb, num_label)
predict_list = np.concatenate((predict_list, predict.cpu().detach().numpy()), axis=0)
lb_list = np.concatenate((lb_list, lb.flatten().cpu().numpy()), axis=0)
predict_list = 1 / (1 + np.exp(-predict_list))
predict_list = np.where(predict_list < 0.5, 0, 1)
acc = np.mean(lb_list == predict_list)
print('Test ID ACC: %.4f' % acc)
best_val_epoch = np.argmax(val_acc_list)
score = {}
checkpoint = torch.load(os.path.join(out_dir, '%s_%s_%d_%d.ckpt'
% (model_name, args.seed, domain_split_index,
num_test_domain if mode == 'train' else 5)), map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval()
with torch.no_grad():
predict_list = np.empty(0)
lb_list = np.empty(0)
for i, batch in enumerate(tqdm(val_dataloader)):
img = batch['img'].to(device)
lb = batch['lb'].to(device).float()
loss, predict = model(img, lb, num_label)
predict_list = np.concatenate((predict_list, predict.cpu().detach().numpy()), axis=0)
lb_list = np.concatenate((lb_list, lb.flatten().cpu().numpy()), axis=0)
predict_list = 1 / (1 + np.exp(-predict_list))
predict_list = np.where(predict_list < 0.5, 0, 1)
acc = np.mean(lb_list == predict_list)
if mode == 'train':
print('(Epoch %d) Val ACC: %.4f' % (best_val_epoch + 1, acc))
else:
print('Val ACC: %.4f' % acc)
score['val'] = acc
with torch.no_grad():
predict_list = np.empty(0)
lb_list = np.empty(0)
for i, batch in enumerate(tqdm(test_id_dataloader)):
img = batch['img'].to(device)
lb = batch['lb'].to(device).float()
loss, predict = model(img, lb, num_label)
predict_list = np.concatenate((predict_list, predict.cpu().detach().numpy()), axis=0)
lb_list = np.concatenate((lb_list, lb.flatten().cpu().numpy()), axis=0)
predict_list = 1 / (1 + np.exp(-predict_list))
predict_list = np.where(predict_list < 0.5, 0, 1)
acc = np.mean(lb_list == predict_list)
if mode == 'train':
print('(Epoch %d) Test ID ACC: %.4f' % (best_val_epoch + 1, acc))
else:
print('Test ID ACC: %.4f' % acc)
score['test_id'] = acc
with torch.no_grad():
predict_list = np.empty(0)
lb_list = np.empty(0)
d_lb_list = np.empty(0)
for j, dataloader, in enumerate(test_od_dataloader_list):
for i, batch in enumerate(tqdm(dataloader)):
img = batch['img'].to(device)
d_lb = batch['d_lb']
lb = batch['lb'].to(device).float()
predict = model.predict(img, domain_index=domain_split_index + j)
predict_list = np.concatenate((predict_list, predict.cpu().detach().numpy()), axis=0)
lb_list = np.concatenate((lb_list, lb.flatten().cpu().numpy()), axis=0)
d_lb_list = np.concatenate((d_lb_list, d_lb.numpy()), axis=0)
predict_list = 1 / (1 + np.exp(-predict_list))
predict_list = np.where(predict_list < 0.5, 0, 1)
acc = np.mean(lb_list == predict_list)
acc_list = calculate_score_per_domain(lb_list, predict_list, d_lb_list)
if mode == 'train':
print('(Epoch %d) Test OD ACC: %.4f' % (best_val_epoch + 1, acc))
else:
print('Test OD ACC: %.4f' % acc)
score['test_od'] = acc
score['test_od_list'] = acc_list
out_dir = 'output/circle_hard/stream'
if not os.path.exists(out_dir):
os.makedirs(out_dir)
with open(os.path.join(out_dir, 'score_%s_%s_%d_%d.pkl'
% (model_name, args.seed, domain_split_index, num_test_domain)), 'wb') as f:
pickle.dump(score, f)
end_time = datetime.now()
print('Running time: %s' % (end_time - start_time))