-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathtrain.py
206 lines (155 loc) · 5.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from PIL import Image, ImageFont, ImageDraw
import numpy
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
def random_character():
'''
produce a random chinese character in unicode.
'''
head = random.randint(0xb0, 0xf7)
if head == 0xd7:
body = random.randint(0xa1, 0xf9)
else:
body = random.randint(0xa1, 0xfe)
val = f"{head:x}{body:x}"
return bytes.fromhex(val).decode("gb2312")
def character_to_image(c):
'''
convert a character to 40 * 40 image.
'''
angle = random.choice(range(-40, 40))
scale = random.uniform(0.8, 1.2)
width_err = random.randint(-10, 10)
height_err = random.randint(-10, 10)
ttf_path = "Kaiti-SC-Bold.ttf"
im = Image.new("RGBA", (72, 102), (0, 0, 0, 0))
font = ImageFont.truetype(ttf_path, 72)
dr = ImageDraw.Draw(im)
dr.fontmode = "1"
dr.text((0, 0), c, font=font, fill="#000000")
im = im.rotate(angle, expand=1)
width, height = im.size
im = im.resize((int(width *scale), int(height*scale)), Image.ANTIALIAS)
width, height = im.size
bg = Image.new("RGBA", (160, 160), (255,255,255,255))
bg.paste(im, (int(80 - width/2 + width_err), int(80 - height/2 + height_err)), im)
return bg.crop((60, 60, 100, 100))
def image_to_training_data(image):
'''
produce one sample given a image.
1 means upright (positive sample),
0 means upside down (negative sample).
'''
Y = random.choice([1, 0])
X = numpy.asarray(image.convert("L")).astype("float32")
X[X <= 150] = -1
# black
X[X > 150] = 1
# white
if Y == 0:
X = numpy.rot90(X, 2)
return X, Y
def data_to_image(d):
'''
convert 2darray to image object.
'''
return Image.fromarray(numpy.uint8(d))
def generate_a_batch(s):
'''
generate a mini batch with size s.
'''
inputs = []
labels = []
for i in range(s):
c = random_character()
image = character_to_image(c)
X, Y = image_to_training_data(image)
inputs.append(X)
labels.append(Y)
inputs = numpy.array(inputs)
labels = numpy.array(labels)
return inputs, labels
def generate_labeled_data(batch=10000, batch_size=100):
'''
generate labeled data.
CPU consume high, very slow.
'''
data = []
for i in range(batch):
data.append(generate_a_batch(batch_size))
print("%.3f%%" % ((i+1)*100.0/batch), end="\r")
return data
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 128, 3, padding=1)
self.conv2 = nn.Conv2d(128, 64, 3, padding=1)
self.conv3 = nn.Conv2d(64, 32, 3, padding=1)
self.fc1 = nn.Linear(32 * 25, 40)
self.fc2 = nn.Linear(40, 2)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = F.max_pool2d(F.relu(self.conv3(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
def main():
training_batch = 10
testing_batch = 1
batch_size = 10
training_data = generate_labeled_data(training_batch, batch_size)
testing_data = generate_labeled_data(testing_batch, batch_size)
device = torch.device("cuda")
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
print(net)
print("neural network: training")
while True:
for i, data in enumerate(training_data):
inputs, labels = data
inputs = torch.from_numpy(inputs.reshape(batch_size,1,40,40))
labels = torch.from_numpy(labels)
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
print('%3d%% loss: %.3f' %
((i + 1)/training_batch*100, loss.item()), end='\r')
if loss.item() < 0.002:
break
print("neural network: testing")
correct = 0
total = 0
with torch.no_grad():
for data in testing_data:
inputs, labels = data
inputs = torch.from_numpy(inputs.reshape(batch_size,1,40,40).copy())
labels = torch.from_numpy(labels)
inputs = inputs.to(device)
labels = labels.to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the %d test inputs: %f %%' % (total, (
100.0 * correct / total)))
print("neural network: saving")
torch.save(net, "./zheye.pt")
if __name__ == "__main__":
main()