-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathevaluate.py
132 lines (99 loc) · 3.34 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import sklearn.mixture
from PIL import Image, ImageFont, ImageDraw
import numpy
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
def CAPTCHA_to_data(filename):
'''
convert CAPTCHA image to 7 chinese character image data.
kind of slow because of GMM iteration.
return a 7 * 40 * 40 array
'''
width=400
height=88
padding=20
padding_color = 249
captcha = Image.open(filename)
bg = numpy.full((height+padding*2, width+padding*2), padding_color, dtype='uint8')
fr = numpy.asarray(captcha.convert('L'))
bg[padding:padding+height,padding:padding+width] = fr
black_pixel_indexes = numpy.transpose(numpy.nonzero(bg <= 150))
gmm = sklearn.mixture.GaussianMixture(n_components=7, covariance_type='tied', reg_covar=1e2, tol=1e3, n_init=9)
gmm.fit(black_pixel_indexes)
indexes = gmm.means_.astype(int).tolist()
new_indexes = []
for [y, x] in indexes:
new_indexes.append((y - padding, x - padding))
data = numpy.empty((0, 40, 40), 'float32')
full_image = data_to_image(bg)
for [y, x] in new_indexes:
cim = full_image.crop((x, y, x + padding*2, y + padding*2))
X = numpy.asarray(cim.convert('L')).astype('float32')
X[X <= 150] = -1
# black
X[X > 150] = 1
# white
data = numpy.append(data, X.reshape(1, 40, 40), axis=0)
return data, new_indexes
def mark_points(image, points):
'''
mark locations on image
'''
im = image.convert("RGB")
bgdr = ImageDraw.Draw(im)
for [y, x] in points:
bgdr.ellipse((x-3, y-3, x+3, y+3), fill ="red", outline ='red')
return im
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 128, 3, padding=1)
self.conv2 = nn.Conv2d(128, 64, 3, padding=1)
self.conv3 = nn.Conv2d(64, 32, 3, padding=1)
self.fc1 = nn.Linear(32 * 25, 40)
self.fc2 = nn.Linear(40, 2)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = F.max_pool2d(F.relu(self.conv3(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
def data_to_image(d):
'''
convert 2darray to image object.
'''
return Image.fromarray(numpy.uint8(d))
# load net from file.
net = torch.load("./zheye.pt")
net.eval()
def predict_result(filename):
'''
given a captcha image file,
return the upsite down character indexes.
'''
device = torch.device("cuda")
data, indexes = CAPTCHA_to_data(filename)
inputs = torch.from_numpy(data.reshape(7, 1, 40, 40)).to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
predicted = predicted.tolist()
return [i for (i, p) in zip(indexes, predicted) if not p]
def main(filename):
ps = predict_result(filename)
#im = Image.open(filename)
#mark_points(im, ps)
print(ps)
import sys
if __name__ == "__main__":
main(sys.argv[1])