-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfaceSwap.py
212 lines (149 loc) · 6.21 KB
/
faceSwap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import sys
import numpy as np
import cv2
# Read points from text file
def readPoints(path) :
# Create an array of points.
points = []
# Read points
with open(path) as file :
for line in file :
x, y = line.split()
points.append((int(x), int(y)))
return points
# Apply affine transform calculated using srcTri and dstTri to src and
# output an image of size.
def applyAffineTransform(src, srcTri, dstTri, size) :
# Given a pair of triangles, find the affine transform.
warpMat = cv2.getAffineTransform( np.float32(srcTri), np.float32(dstTri) )
# Apply the Affine Transform just found to the src image
dst = cv2.warpAffine( src, warpMat, (size[0], size[1]), None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101 )
return dst
# Check if a point is inside a rectangle
def rectContains(rect, point) :
if point[0] < rect[0] :
return False
elif point[1] < rect[1] :
return False
elif point[0] > rect[0] + rect[2] :
return False
elif point[1] > rect[1] + rect[3] :
return False
return True
#calculate delanauy triangle
def calculateDelaunayTriangles(rect, points):
#create subdiv
subdiv = cv2.Subdiv2D(rect)
# Insert points into subdiv
for p in points:
subdiv.insert(p)
triangleList = subdiv.getTriangleList()
delaunayTri = []
pt = []
for t in triangleList:
pt.append((t[0], t[1]))
pt.append((t[2], t[3]))
pt.append((t[4], t[5]))
pt1 = (t[0], t[1])
pt2 = (t[2], t[3])
pt3 = (t[4], t[5])
if rectContains(rect, pt1) and rectContains(rect, pt2) and rectContains(rect, pt3):
ind = []
#Get face-points (from 68 face detector) by coordinates
for j in range(0, 3):
for k in range(0, len(points)):
if(abs(pt[j][0] - points[k][0]) < 1.0 and abs(pt[j][1] - points[k][1]) < 1.0):
ind.append(k)
# Three points form a triangle. Triangle array corresponds to the file tri.txt in FaceMorph
if len(ind) == 3:
delaunayTri.append((ind[0], ind[1], ind[2]))
pt = []
return delaunayTri
# Warps and alpha blends triangular regions from img1 and img2 to img
def warpTriangle(img1, img2, t1, t2) :
# Find bounding rectangle for each triangle
r1 = cv2.boundingRect(np.float32([t1]))
r2 = cv2.boundingRect(np.float32([t2]))
# Offset points by left top corner of the respective rectangles
t1Rect = []
t2Rect = []
t2RectInt = []
for i in range(0, 3):
t1Rect.append(((t1[i][0] - r1[0]),(t1[i][1] - r1[1])))
t2Rect.append(((t2[i][0] - r2[0]),(t2[i][1] - r2[1])))
t2RectInt.append(((t2[i][0] - r2[0]),(t2[i][1] - r2[1])))
# Get mask by filling triangle
mask = np.zeros((r2[3], r2[2], 3), dtype = np.float32)
cv2.fillConvexPoly(mask, np.int32(t2RectInt), (1.0, 1.0, 1.0), 16, 0)
# Apply warpImage to small rectangular patches
img1Rect = img1[r1[1]:r1[1] + r1[3], r1[0]:r1[0] + r1[2]]
#img2Rect = np.zeros((r2[3], r2[2]), dtype = img1Rect.dtype)
size = (r2[2], r2[3])
img2Rect = applyAffineTransform(img1Rect, t1Rect, t2Rect, size)
img2Rect = img2Rect * mask
# Copy triangular region of the rectangular patch to the output image
img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] = img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] * ( (1.0, 1.0, 1.0) - mask )
img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] = img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] + img2Rect
def ResizeWithAspectRatio(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
return cv2.resize(image, dim, interpolation=inter)
if __name__ == '__main__' :
# Make sure OpenCV is version 3.0 or above
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
if int(major_ver) < 3 :
print >>sys.stderr, 'ERROR: Script needs OpenCV 3.0 or higher'
sys.exit(1)
# Read images
filename1 = 'test1.jpg'
filename2 = 'test2.jpg'
img1 = cv2.imread(filename1)
img2 = cv2.imread(filename2)
img1Warped = np.copy(img2);
# Read array of corresponding points
points1 = readPoints(filename1 + '.txt')
points2 = readPoints(filename2 + '.txt')
# Find convex hull
hull1 = []
hull2 = []
hullIndex = cv2.convexHull(np.array(points2), returnPoints = False)
for i in range(0, len(hullIndex)):
hull1.append(points1[int(hullIndex[i])])
hull2.append(points2[int(hullIndex[i])])
# Find delanauy traingulation for convex hull points
sizeImg2 = img2.shape
rect = (0, 0, sizeImg2[1], sizeImg2[0])
dt = calculateDelaunayTriangles(rect, hull2)
if len(dt) == 0:
quit()
# Apply affine transformation to Delaunay triangles
for i in range(0, len(dt)):
t1 = []
t2 = []
#get points for img1, img2 corresponding to the triangles
for j in range(0, 3):
t1.append(hull1[dt[i][j]])
t2.append(hull2[dt[i][j]])
warpTriangle(img1, img1Warped, t1, t2)
# Calculate Mask
hull8U = []
for i in range(0, len(hull2)):
hull8U.append((hull2[i][0], hull2[i][1]))
mask = np.zeros(img2.shape, dtype = img2.dtype)
cv2.fillConvexPoly(mask, np.int32(hull8U), (255, 255, 255))
r = cv2.boundingRect(np.float32([hull2]))
center = ((r[0]+int(r[2]/2), r[1]+int(r[3]/2)))
# Clone seamlessly.
output = cv2.seamlessClone(np.uint8(img1Warped), img2, mask, center, cv2.NORMAL_CLONE)
output = ResizeWithAspectRatio(output, width=400)
cv2.imshow("Face Swapped", output)
cv2.waitKey(0)
cv2.destroyAllWindows()