-
Notifications
You must be signed in to change notification settings - Fork 42
/
train.py
113 lines (94 loc) · 4.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
from sklearn.metrics import accuracy_score
from tools import wer
def train_epoch(model, criterion, optimizer, dataloader, device, epoch, logger, log_interval, writer):
model.train()
losses = []
all_label = []
all_pred = []
for batch_idx, data in enumerate(dataloader):
# get the inputs and labels
inputs, labels = data['data'].to(device), data['label'].to(device)
optimizer.zero_grad()
# forward
outputs = model(inputs)
if isinstance(outputs, list):
outputs = outputs[0]
# compute the loss
loss = criterion(outputs, labels.squeeze())
losses.append(loss.item())
# compute the accuracy
prediction = torch.max(outputs, 1)[1]
all_label.extend(labels.squeeze())
all_pred.extend(prediction)
score = accuracy_score(labels.squeeze().cpu().data.squeeze().numpy(), prediction.cpu().data.squeeze().numpy())
# backward & optimize
loss.backward()
optimizer.step()
if (batch_idx + 1) % log_interval == 0:
logger.info("epoch {:3d} | iteration {:5d} | Loss {:.6f} | Acc {:.2f}%".format(epoch+1, batch_idx+1, loss.item(), score*100))
# Compute the average loss & accuracy
training_loss = sum(losses)/len(losses)
all_label = torch.stack(all_label, dim=0)
all_pred = torch.stack(all_pred, dim=0)
training_acc = accuracy_score(all_label.squeeze().cpu().data.squeeze().numpy(), all_pred.cpu().data.squeeze().numpy())
# Log
writer.add_scalars('Loss', {'train': training_loss}, epoch+1)
writer.add_scalars('Accuracy', {'train': training_acc}, epoch+1)
logger.info("Average Training Loss of Epoch {}: {:.6f} | Acc: {:.2f}%".format(epoch+1, training_loss, training_acc*100))
def train_seq2seq(model, criterion, optimizer, clip, dataloader, device, epoch, logger, log_interval, writer):
model.train()
losses = []
all_trg = []
all_pred = []
all_wer = []
for batch_idx, (imgs, target) in enumerate(dataloader):
imgs = imgs.to(device)
target = target.to(device)
optimizer.zero_grad()
# forward
outputs = model(imgs, target)
# target: (batch_size, trg len)
# outputs: (trg_len, batch_size, output_dim)
# skip sos
output_dim = outputs.shape[-1]
outputs = outputs[1:].view(-1, output_dim)
target = target.permute(1,0)[1:].reshape(-1)
# compute the loss
loss = criterion(outputs, target)
losses.append(loss.item())
# compute the accuracy
prediction = torch.max(outputs, 1)[1]
score = accuracy_score(target.cpu().data.squeeze().numpy(), prediction.cpu().data.squeeze().numpy())
all_trg.extend(target)
all_pred.extend(prediction)
# compute wer
# prediction: ((trg_len-1)*batch_size)
# target: ((trg_len-1)*batch_size)
batch_size = imgs.shape[0]
prediction = prediction.view(-1, batch_size).permute(1,0).tolist()
target = target.view(-1, batch_size).permute(1,0).tolist()
wers = []
for i in range(batch_size):
# add mask(remove padding, sos, eos)
prediction[i] = [item for item in prediction[i] if item not in [0,1,2]]
target[i] = [item for item in target[i] if item not in [0,1,2]]
wers.append(wer(target[i], prediction[i]))
all_wer.extend(wers)
# backward & optimize
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
if (batch_idx + 1) % log_interval == 0:
logger.info("epoch {:3d} | iteration {:5d} | Loss {:.6f} | Acc {:.2f}% | WER {:.2f}%".format(epoch+1, batch_idx+1, loss.item(), score*100, sum(wers)/len(wers)))
# Compute the average loss & accuracy
training_loss = sum(losses)/len(losses)
all_trg = torch.stack(all_trg, dim=0)
all_pred = torch.stack(all_pred, dim=0)
training_acc = accuracy_score(all_trg.cpu().data.squeeze().numpy(), all_pred.cpu().data.squeeze().numpy())
training_wer = sum(all_wer)/len(all_wer)
# Log
writer.add_scalars('Loss', {'train': training_loss}, epoch+1)
writer.add_scalars('Accuracy', {'train': training_acc}, epoch+1)
writer.add_scalars('WER', {'train': training_wer}, epoch+1)
logger.info("Average Training Loss of Epoch {}: {:.6f} | Acc: {:.2f}% | WER {:.2f}%".format(epoch+1, training_loss, training_acc*100, training_wer))